• Tidak ada hasil yang ditemukan

https://drive.google.com/file/d/0B z5oZTdyBW1NUkwVnJoMUVkU0k/view?pli=1

N/A
N/A
Protected

Academic year: 2017

Membagikan "https://drive.google.com/file/d/0B z5oZTdyBW1NUkwVnJoMUVkU0k/view?pli=1"

Copied!
37
0
0

Teks penuh

(1)

4-1

DISTRIBUSI VARIABEL ACAK

DISTRIBUSI VARIABEL ACAK

(2)

The Normal

The Normal

(3)

4-3

Sifat-2 dari Dist.Normal

Dist. Normal Standard

Transformasi dari Variabel Acak Normal

Pendekatan Dist. Normal pada Dist.

Binomial

The Normal Distribution

(4)

Mengidentifikasi kapan variabel acak akan berdistribusi

normal

Mengetahui Kegunaan dari dist.normal

Menggunakan tabel distribusi normal untuk menghitung

peluang

Mentransformasi suatu distribusi normal ke dalam

distribusi normal standar.

Mengkonversi distribusi binomial ke dalam approximate

normal distribution

LEARNING OBJECTIVES

LEARNING OBJECTIVES

Setelah memepelajari bagian ini diharapkan dapat:

(5)

4-5

As

n

increases, the binomial distribution approaches a ...

n = 6

n = 10

n = 14

Normal Probability Density

Function:

6 5 4 3 2 1 0 0.3 0.2 0.1 0.0 x P (x )

Binomial Distribution: n=6, p=.5

10 9 8 7 6 5 4 3 2 1 0 0.3 0.2 0.1 0.0 x P (x )

Binomial Distribution: n=10, p=.5

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0.3 0.2 0.1 0.0 x P (x )

Binomial Distribution: n=14, p=.5

5 0 -5 0.4 0.3 0.2 0.1 0.0 x f(x )

Normal Distribution:  = 0, 

(6)

The normal probability density function:

5 0

-5 0.4

0.3

0.2

0.1

0.0

x

f(x

)

Normal Distribution:  = 0,  = 1

Distribusi Peluang Normal

Distribusi Peluang Normal

f x

e

x

x

e

( )

.

...

.

...

  

 

   

   

1

2

2

2

2 2

2 7182818

3 14159265



for

(7)

4-7

Sifat-2 dari Dist.Normal

Sifat-2 dari Dist.Normal

Termasuk keluarga

Bell-shaped

dan Dist.

Symmetric,

karena d

istribusinya simetris, setengah disebelah kiri

dan setengah disebelah kanan sumbu rata-rata.

Variabel X disebut berdistribusi Normal Umum jika

mempunyai

mean

,

dan

variance

,





[

X~N(



)

]

(8)

Jika beberapa variabel acak yang saling bebas

berdist. Normal, maka jumlah dari variabel

tersebut akan berdistribusi normal juga.

Rata-rata dari jumlah variabel tersebut =

jumlah rata-ratanya.

(9)

4-9

Jika

X

1

, X

2

, …, X

n

adalah variabel acak normal, maka

Jumlah S juga akan berdist. Normal dengan:

E(S) = E(X

1

) + E(X

2

) + … + E(X

n

)

V(S) = V(X

1

) + V(X

2

) + … + V(X

n

)

(10)

Contoh -1 :

Contoh -1 :

Misalkan

X

1

, X

2

, d

an

X

3

adalah

variabel acak yg saling

bebas yang mengikuti dist.normal dengan means dan

varians sbb:

Mean

Variance

X

1

10

1

X

2

20

2

X

3

30

3

Mis. S = X

1

+ X

2

+ X

3

. maka E(S) = 10 + 20 + 30 = 60 dan

V(S) = 1 + 2 + 3 = 6. Deviasi standar dari S adalah

= 2.45.

(11)

4-11

Jika

X

1

, X

2

, …, X

n

variabel acak normal, maka

variabel acak Q yaitu Q =

a

1

X

1

+ a

2

X

2

+ … +

a

n

X

n

+ b akan berdist. Normal juga dengan :

E(Q) = a

1

E(X

1

) + a

2

E(X

2

) + … + a

n

E(X

n

) + b

V(Q) = a

12

V(X

1

) + a

22

V(X

2

) + … + a

n2

V(X

n

)

Catatan:

Tidak berlaku bagi simpangan

(12)

Contoh-2 :

Contoh-2 :

Misal

X

1

, X

2

, X

3

d

an

X

4

adalah variabel acak yg berdist. Normaln

dengan

means dan varians di bawah ini. Tentukan mean dan

varians dari Q =

X

1

- 2X

2

+ 3X

2

- 4X

4

+ 5

Mean

Variance

X

1

12

4

X

2

-5

2

X

3

8

5

X

4

10

1

E(Q) = 12 – 2(-5) + 3(8) – 4(10) + 5 = 11

V(Q) = 4 + (-2)

2

(2) + 3

2

(5) + (-4)

2

(1) = 73

(13)

4-13

Computing the Mean, Variance and Standard

Computing the Mean, Variance and Standard

Deviation for the Sum of Independent Random

Deviation for the Sum of Independent Random

Variables Using the Template

(14)

Seluruh fungsi densitas normal masing-2 dengan mean dan varians berbeda

Z~N(0,1)

5 0

-5 0.4

0.3

0.2

0.1

0.0

z

f(z

)

Normal Distribution:

=0,

=1

W~N(40,1)

X~N(30,25)

45 40

35 0.4

0.3

0.2

0.1

0.0

w

f(w

)

Normal Distribution:

=40,

=1

60 50 40 30 20 10 0 0.2

0.1

0.0

x

f(x

)

Normal Distribution:

=30,

=5

Y~N(50,9)

65 55

45 35

0.2

0.1

0.0

y

f(y

)

Normal Distribution:

=50,

=3

50

Consider:

P(39



W



41)

P(25



X



35)

P(47



Y



53)

P(-1



Z



1)

Peluang masing-2

merupakan daerah di

bawah kurva fungsi

densitas.

(15)

4-15

4-3 Computing Normal Probabilities

4-3 Computing Normal Probabilities

(16)

Z adalah

standard normal random variable

, dengan mean



= 0

dan deviasi standar



= 1

:

Z~N(0,1

2

)

.

5 4

3 2

1 0

- 1 - 2

- 3 - 4

- 5 0 . 4

0 . 3

0 . 2

0 . 1

0 . 0

Z

f(

z)

Standard Normal Distribution



= 0

{

=1

Dist. Normal Standar

(17)

4-17

z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

0.0 0.0000 0.0040 0.0080 0.0120 0.0160 0.0199 0.0239 0.0279 0.0319 0.0359 0.1 0.0398 0.0438 0.0478 0.0517 0.0557 0.0596 0.0636 0.0675 0.0714 0.0753 0.2 0.0793 0.0832 0.0871 0.0910 0.0948 0.0987 0.1026 0.1064 0.1103 0.1141 0.3 0.1179 0.1217 0.1255 0.1293 0.1331 0.1368 0.1406 0.1443 0.1480 0.1517 0.4 0.1554 0.1591 0.1628 0.1664 0.1700 0.1736 0.1772 0.1808 0.1844 0.1879 0.5 0.1915 0.1950 0.1985 0.2019 0.2054 0.2088 0.2123 0.2157 0.2190 0.2224 0.6 0.2257 0.2291 0.2324 0.2357 0.2389 0.2422 0.2454 0.2486 0.2517 0.2549 0.7 0.2580 0.2611 0.2642 0.2673 0.2704 0.2734 0.2764 0.2794 0.2823 0.2852 0.8 0.2881 0.2910 0.2939 0.2967 0.2995 0.3023 0.3051 0.3078 0.3106 0.3133 0.9 0.3159 0.3186 0.3212 0.3238 0.3264 0.3289 0.3315 0.3340 0.3365 0.3389 1.0 0.3413 0.3438 0.3461 0.3485 0.3508 0.3531 0.3554 0.3577 0.3599 0.3621 1.1 0.3643 0.3665 0.3686 0.3708 0.3729 0.3749 0.3770 0.3790 0.3810 0.3830 1.2 0.3849 0.3869 0.3888 0.3907 0.3925 0.3944 0.3962 0.3980 0.3997 0.4015 1.3 0.4032 0.4049 0.4066 0.4082 0.4099 0.4115 0.4131 0.4147 0.4162 0.4177 1.4 0.4192 0.4207 0.4222 0.4236 0.4251 0.4265 0.4279 0.4292 0.4306 0.4319

1.5 0.4332 0.4345 0.4357 0.4370 0.4382 0.4394 0.4406 0.4418 0.4429 0.4441 1.6 0.4452 0.4463 0.4474 0.4484 0.4495 0.4505 0.4515 0.4525 0.4535 0.4545 1.7 0.4554 0.4564 0.4573 0.4582 0.4591 0.4599 0.4608 0.4616 0.4625 0.4633 1.8 0.4641 0.4649 0.4656 0.4664 0.4671 0.4678 0.4686 0.4693 0.4699 0.4706 1.9 0.4713 0.4719 0.4726 0.4732 0.4738 0.4744 0.4750 0.4756 0.4761 0.4767 2.0 0.4772 0.4778 0.4783 0.4788 0.4793 0.4798 0.4803 0.4808 0.4812 0.4817 2.1 0.4821 0.4826 0.4830 0.4834 0.4838 0.4842 0.4846 0.4850 0.4854 0.4857 2.2 0.4861 0.4864 0.4868 0.4871 0.4875 0.4878 0.4881 0.4884 0.4887 0.4890 2.3 0.4893 0.4896 0.4898 0.4901 0.4904 0.4906 0.4909 0.4911 0.4913 0.4916 2.4 0.4918 0.4920 0.4922 0.4925 0.4927 0.4929 0.4931 0.4932 0.4934 0.4936 2.5 0.4938 0.4940 0.4941 0.4943 0.4945 0.4946 0.4948 0.4949 0.4951 0.4952 2.6 0.4953 0.4955 0.4956 0.4957 0.4959 0.4960 0.4961 0.4962 0.4963 0.4964 2.7 0.4965 0.4966 0.4967 0.4968 0.4969 0.4970 0.4971 0.4972 0.4973 0.4974 2.8 0.4974 0.4975 0.4976 0.4977 0.4977 0.4978 0.4979 0.4979 0.4980 0.4981 2.9 0.4981 0.4982 0.4982 0.4983 0.4984 0.4984 0.4985 0.4985 0.4986 0.4986 3.0 0.4987 0.4987 0.4987 0.4988 0.4988 0.4989 0.4989 0.4989 0.4990 0.4990

5 4 3 2 1 0 -1 -2 -3 -4 -5 0.4

0.3

0.2

0.1

0.0

Z

f(z

)

Standard Normal Distribution

1.56

{

Standard Normal Probabilities

Look in row labeled

1.5

and column labeled

.06

to

find

P(0



z



1.56) =

0.4406

Finding Probabilities of the Standard

Finding Probabilities of the Standard

Normal Distribution:

(18)

Normal Distribution:

Normal Distribution:

P(Z < -2.47)

P(Z < -2.47)

To find

P(Z<-2.47)

:

Find table area for 2.47

P(0 < Z < 2.47) = .4932

P(Z < -2.47) = .5 - P(0 < Z < 2.47)

= .5 - .4932 = 0.0068

5 4 3 2 1 0 -1 -2 -3 -4 -5 0.4

0.3

0.2

0.1

0.0

Z

f(

z)

[image:18.720.38.720.24.496.2]

Standard Normal Distribution

Table area for 2.47

P(0 < Z < 2.47) = 0.4932

Area to the left of -2.47

P(Z < -2.47) = .5 - 0.4932

= 0.0068

z ...

.06

.07

.08

.

.

.

.

.

.

.

.

.

.

.

.

2.3 ...

0.4909

0.4911

0.4913

2.4 ...

0.4931

0.4932

0.4934

2.5 ...

0.4948

0.4949

0.4951

.

(19)

4-19

Finding Probabilities of the Standard

Finding Probabilities of the Standard

Normal Distribution:

Normal Distribution:

P(1< Z < 2)

P(1< Z < 2)

z .00 ...

. . . . . .

0.9 0.3159 ... 1.0 0.3413 ... 1.1 0.3643 ... . .

. . . .

1.9 0.4713 ... 2.0 0.4772 ... 2.1 0.4821 ... . .

. . . .

To find

P(1



Z



2)

:

1. Find table area for 2.00

F(2) = P(Z



2.00) = .5 + .4772 =.9772

2. Find table area for 1.00

F(1) = P(Z



1.00) = .5 + .3413 = .8413

3. P(1



Z



2.00) = P(Z



2.00) - P(Z



1.00)

= .9772 - .8413 =

0.1359

5 4 3 2 1 0 -1 -2 -3 -4 -5 0.4

0.3

0.2

0.1

0.0

Z

f(z

)

Standard Normal Distribution

Area between 1 and 2

(20)

Random Variable:

Random Variable:

P(0 < Z < z) = 0.40

P(0 < Z < z) = 0.40

To find

z

such that

P(0



Z



z) = .40:

1. Find a probability as close as

possible to .40 in the table of

standard normal probabilities.

2. Then determine the value of

z

from the corresponding row

and column.

P(0



Z



1.28

)



.40

Also, since

P(Z



0) = .50

P(Z



1.28

)

.90

-5 -4 -3 -2 -1 0 1 2 3 4 5

0.4

0.3

0.2

0.1

0.0

Z

f(

z)

Standard Normal Distribution

Area = .40 (.3997)

Z = 1.28

Area to the left of 0 = .50

P(z



0) = .50

z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

(21)

4-21

z .04 .05 .06 .07 .08 .09

. . . . . . . . . . . . . . . 2.4 ... 0.4927 0.4929 0.4931 0.4932 0.4934 0.4936 2.5 ... 0.4945 0.4946 0.4948 0.4949 0.4951 0.4952 2.6 ... 0.4959 0.4960 0.4961 0.4962 0.4963 0.4964 . . . . . . . . . . . .

To have

.99

in the center of the distribution, there

should be

(1/2)(1-.99) = (1/2)(.01) = .005

in each

tail of the distribution, and

(1/2)(.99) = .495

in

each half of the

.99

interval. That is:

P(0



Z



z

.005

) = .495

Look to the table of standard normal probabilities

to find that:



 

z

.005

 

 

z

.005



P(-.2575



Z



) = .99

To have

.99

in the center of the distribution, there

should be

(1/2)(1-.99) = (1/2)(.01) = .005

in each

tail of the distribution, and

(1/2)(.99) = .495

in

each half of the

.99

interval. That is:

P(0



Z



z

.005

) = .495

Look to the table of standard normal probabilities

to find that:

   

z

.005

  

z

.005



P(-.2575



Z



) = .99

5 4 3 2 1 0 -1 -2 -3 -4 -5 0.4

0.3

0.2

0.1

0.0

Z

f(z

)

-z

.005

z

.005

Area in right tail = .005

Area in left tail = .005

Area in center right = .495

Area in center left = .495

2.575

-2.575

Total area in center = .99

(22)

The area within

k

of the mean is the same for all normal random variables. So an

area under any normal distribution is equivalent to an area under the standard normal. In

this example: P(40



X







P(-1



Z

  



since

 



and



The area within

k

of the mean is the same for all normal random variables

.

So an

area under any normal distribution is equivalent to an area under the standard normal

. In

this example: P(40



X

  

P(-1



Z



since



and



100 90 80 70 60 50 40 30 20 10 0 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0.00 X f(x )

Normal Distribution:

=50,

=10

{

=10

5 4 3 2 1 0 -1 -2 -3 -4 -5 0.4 0.3 0.2 0.1 0.0 Z f(z )

Standard Normal Distribution

1.0

{

Transformation

(2) Division by

x

)

The transformation of

X

to

Z

:

The transformation of

X

to

Z

:

The inverse transformation of

Z

to

X

:

The inverse transformation of

Z

to

X

:

Random Variables

Random Variables

(1) Subtraction: (X -

x

)

Z

X

x

x

(23)

4-23

Example 4-9

Example 4-9

X~N(160,30

2

)

Example 4-9

Example 4-9

X~N(160,30

2

)

Example 4-10

Example 4-10

X~N(127,22

2

)

Example 4-10

Example 4-10

X~N(127,22

2

)

Using the Normal Transformation

Using the Normal Transformation

P

X

P

X

P

Z

P

Z

(

)

.

.

.

.

100

180

100

180

100 160

30

180 160

30

2

6667

0 4772 0 2475

0 7247









P X

P

X

P Z

P Z

(

)

.

.

.

.

150

150

150 127

22

1 045

0 5 0 3520

0 8520

(24)

Example 4-11

Example 4-11

X~N(383,12

2

)

Example 4-11

Example 4-11

X~N(383,12

2

)

440 390 340 0.05 0.04 0.03 0.02 0.01 0.00 X f(X )

Normal Distribution:  = 383,  = 12

5 4 3 2 1 0 -1 -2 -3 -4 -5 0.4 0.3 0.2 0.1 0.0 Z f(z )

Standard Normal Distribution

Equ

ival

ent

area

s

Example 4-11

Example 4-11

Template solution

Template solution

P

X

P

X

P

Z

P

Z

(

)

.

.

.

.

.

394

399

394

399

394 383

12

399 383

12

0 9166

1 333

0 4088 0 3203

0 0885

(25)

4-25

The transformation of

X

to

Z

:

The transformation of

X

to

Z

:

The inverse transformation of

The inverse transformation of

Z

Z

to

to

X

X

:

:

The transformation of

X

to

Z,

where

a

and

b

are numbers::

The transformation of

X

to

Z,

where

a

and

b

are numbers::

The Transformation of Normal

The Transformation of Normal

Random Variables

Random Variables

P X

a

P Z

a

P X

b

P Z

b

P a

X

b

P

a

Z

b

(

)

(

)

(

)

Z

X

x

x

X

x

Z

x

(26)

5 4 3 2 1 0 -1 -2 -3 -4 -5 0.4

0.3

0.2

0.1

0.0

Z

f(

z)

S tand ard N o rm al D is trib utio n

The probability that a normal

random variable will be within

1

standard deviation

from its mean (on

either side) is 0.6826, or

approximately

0.68

.

The probability that a normal

random variable will be within

2

standard deviations

from its mean is

0.9544, or

approximately

0.95

.

The probability that a normal

random variable will be within

3

standard deviation

from its mean is

0.9974.

(27)

4-27

z .07 .08 .09

. . . . . . . . . . . . . . . 1.1 . . . 0.3790 0.3810 0.3830 1.2 . . . 0.3980 0.3997 0.4015 1.3 . . . 0.4147 0.4162 0.4177 . . . . . . . . . . . . . . .

The area within

k

of the mean is the same for all normal random variables. To find a

probability associated with any interval of values for any normal random variable, all that

is needed is to express the interval in terms of numbers of standard deviations from the

mean. That is the purpose of the standard normal transformation. If

X~N(50,10

2

),

That is,

P(X >70)

can be found easily because 70 is 2 standard deviations above the mean

of

X: 70 =



+ 2

.

P(X > 70)

is equivalent to

P(Z > 2),

an area under the standard normal

distribution.

The area within

k

of the mean is the same for all normal random variables. To find a

probability associated with any interval of values for any normal random variable, all that

is needed is to

express the interval in terms of numbers of standard deviations from the

mean

. That is the purpose of the standard normal transformation. If

X~N(50,10

2

),

That is,

P(X >70)

can be found easily because 70 is 2 standard deviations above the mean

of

X: 70 =



+ 2

.

P(X > 70)

is equivalent to

P(Z > 2),

an area under the standard normal

distribution.

Example 4-12

X~N(124,12

2

)

P(X > x) = 0.10

and

P(Z > 1.28)



0.10

x =



+ z

= 124 + (1.28)(12) =

139.36

Example 4-12

X~N(124,12

2

)

P(X > x) = 0.10

and

P(Z > 1.28)



0.10

x =



+ z

= 124 + (1.28)(12) =

139.36

180 130 80 0.04 0.03 0.02 0.01 0.00

X

f(x

)

Normal Distribution:

= 124,

= 12

4-6 The Inverse Transformation

4-6 The Inverse Transformation

0.01

139.36

P X

(

)

P

x

P Z

P Z

(

)

 

 

70

70

70 50

10

2

(28)

Example 4-12

X~N(124,12

2

)

P(X > x) = 0.10

and

P(Z > 1.28)



0.10

x =



+ z

= 124 + (1.28)(12) = 139.36

Example 4-12

X~N(124,12

2

)

P(X > x) = 0.10

and

P(Z > 1.28)



0.10

x =



+ z

= 124 + (1.28)(12) = 139.36

(29)

4-29

Example 4-13

X~N(5.7,0.5

2

)

P(X > x)=0.01

and

P(Z > 2.33)



0.01

x =



+ z

= 5.7 + (2.33)(0.5) = 6.865

Example 4-13

X~N(5.7,0.5

2

)

P(X > x)=0.01

and

P(Z > 2.33)



0.01

x =



+ z

= 5.7 + (2.33)(0.5) = 6.865

Example 4-14

X~N(2450,400

2

)

P(a<X<b)=0.95

and

P(-1.96<Z<1.96)



0.95

x =



z

= 2450 ± (1.96)(400) = 2450

±784=(1666,3234)

P(1666 < X < 3234) = 0.95

Example 4-14

X~N(2450,400

2

)

P(a<X<b)=0.95

and

P(-1.96<Z<1.96)



0.95

x =



z

= 2450 ± (1.96)(400) = 2450

±784=(1666,3234)

P(1666 < X < 3234) = 0.95

z .05 .06 .07

. . . . . . . . . . . . . . . 1.8 . . . 0.4678 0.4686 0.4693 1.9 . . . 0.4744 0.4750 0.4756 2.0 . . . 0.4798 0.4803 0.4808 . . . . . . . . . . 4000 3000 2000 1000 0.0015 0.0010 0.0005 0.0000 X f(x )

Normal Distribution:

= 2450

= 400

4000 3000 2000 1000 0.0015 0.0010 0.0005 0.0000 5 4 3 2 1 0 -1 -2 -3 -4 -5 Z .4750 .4750 .0250 .0250 -1.96 1.96

The Inverse Transformation (Continued)

The Inverse Transformation (Continued)

z .02 .03 .04

. . . . . . . . . . . . . . . 2.2 . . . 0.4868 0.4871 0.4875 2.3 . . . 0.4898 0.4901 0.4904 2.4 . . . 0.4922 0.4925 0.4927 . . . . . . . . . . . . . . . 8.2 7.2 6.2 5.2 4.2 3.2 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 8.2 7.2 6.2 5.2 4.2 3.2 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 X f(x )

Normal Distribution:

= 5.7

= 0.5

5 4 3 2 1 0 -1 -2 -3 -4 -5

z

Z.01 = 2.33

Area = 0.49

Area = 0.01

(30)

4000 3000

2000 1000

0.0012 0.0010 0.0008 0.0006 0.0004 0.0002 0.0000

X

f(x

)

Normal Distribution:

= 2450,

= 400

. . . . . .

5 4 3 2 1 0 -1 -2 -3 -4 -5 0.4

0.3

0.2

0.1

0.0

Z

f(z

)

S tand ard Norm al D istributio n

1. Draw pictures of

the normal

distribution in

question and of the

standard normal

distribution.

1. Draw pictures of

the normal

distribution in

question and of the

standard normal

distribution.

(31)

4-31

1. Draw pictures of

the normal

distribution in

question and of the

standard normal

distribution.

1. Draw pictures of

the normal

distribution in

question and of the

standard normal

distribution.

2. Shade the area

corresponding to

the desired

probability.

2. Shade the area

corresponding to

the desired

probability.

Finding Values of a Normal Random

Finding Values of a Normal Random

Variable, Given a Probability

Variable, Given a Probability

4000 3000 2000 1000 0.0012 0.0010 0.0008 0.0006 0.0004 0.0002 0.0000

X

f(x

)

Normal Distribution:

= 2450,

= 400

. . . . . .

.4750

.4750

.9500

5 4 3 2 1 0 -1 -2 -3 -4 -5 0.4 0.3 0.2 0.1 0.0 Z f(z )

S tand ard Norm al D istribution

.4750

.4750

(32)

z .05 .06 .07

. . . . . . . . . . . . . . . 1.8 . . . 0.4678 0.4686 0.4693 1.9 . . . 0.4744 0.4750 0.4756 2.0 . . . 0.4798 0.4803 0.4808 . . . . . . . . . .

3. From the table

of the standard

normal

distribution,

find the

z

value

or values.

3. From the table

of the standard

normal

distribution,

find the

z

value

or values.

1. Draw pictures of

the normal

distribution in

question and of the

standard normal

distribution.

1. Draw pictures of

the normal

distribution in

question and of the

standard normal

distribution.

2. Shade the area

corresponding

to the desired

probability.

2. Shade the area

corresponding

to the desired

probability.

Variable, Given a Probability

Variable, Given a Probability

4000 3000 2000 1000 0.0012 0.0010 0.0008 0.0006 0.0004 0.0002 0.0000

X

f(x

)

Normal Distribution:

= 2450,

= 400

. . . . . .

.4750

.4750

.9500

5 4 3 2 1 0 -1 -2 -3 -4 -5 0.4 0.3 0.2 0.1 0.0 Z f(z )

S tand ard Norm al D istrib utio n

.4750

.4750

.9500

(33)

4-33

4. Use the

transformation

from z to x to get

value(s) of the

original random

variable.

4. Use the

transformation

from z to x to get

value(s) of the

original random

variable.

x =



z

= 2450 ± (1.96)

(400)

= 2450 ±784=(1666,3234)

x =



z

= 2450 ± (1.96)

(400)

= 2450 ±784=(1666,3234)

Finding Values of a Normal Random

Finding Values of a Normal Random

Variable, Given a Probability

Variable, Given a Probability

z .05 .06 .07

. . . . . . . . . . . . . . . 1.8 . . . 0.4678 0.4686 0.4693 1.9 . . . 0.4744 0.4750 0.4756 2.0 . . . 0.4798 0.4803 0.4808 . . . . . . . . . .

3. From the table

of the standard

normal

distribution,

find the

z

value

or values.

3. From the table

of the standard

normal

distribution,

find the

z

value

or values.

1. Draw pictures of

the normal

distribution in

question and of the

standard normal

distribution.

1. Draw pictures of

the normal

distribution in

question and of the

standard normal

distribution.

2. Shade the area

corresponding

to the desired

probability.

2. Shade the area

corresponding

to the desired

probability.

4000 3000 2000 1000 0.0012 0.0010 0.0008 0.0006 0.0004 0.0002 0.0000

X

f(x

)

Normal Distribution:

= 2450,

= 400

. . . . . .

.4750

.4750

.9500

5 4 3 2 1 0 -1 -2 -3 -4 -5 0.4 0.3 0.2 0.1 0.0 Z f(z )

S tandard Norm al D istrib utio n

.4750

.4750

.9500

(34)

10 5

0 0.3

0.2

0.1

0.0

X

f(x

)

Normal Distribution:

= 3.5,

= 1.323

7 6 5 4 3 2 1 0 0.3

0.2

0.1

0.0

X

P

(x

)

Binomial Distribution: n = 7, p = 0.50

The normal distribution with

 = 3.5

and

 = 1.323

is a close

approximation to the binomial with

n = 7

and

p = 0.50

.

The normal distribution with

= 3.5

and

= 1.323

is a close

approximation to the binomial with

n = 7

and

p = 0.50

.

P(x<4.5) = 0.7749

MTB > cdf 4.5;

SUBC> normal 3.5 1.323.

Cumulative Distribution Function

Normal with mean = 3.50000 and standard deviation = 1.32300

x P( X <= x)

4.5000 0.7751

MTB > cdf 4.5;

SUBC> normal 3.5 1.323.

Cumulative Distribution Function

Normal with mean = 3.50000 and standard deviation = 1.32300

x P( X <= x)

4.5000 0.7751

MTB > cdf 4;

SUBC> binomial 7,.5.

Cumulative Distribution Function

Binomial with n = 7 and p = 0.500000

x P( X <= x)

4.00 0.7734

MTB > cdf 4;

SUBC> binomial 7,.5.

Cumulative Distribution Function

Binomial with n = 7 and p = 0.500000

x P( X <= x)

4.00 0.7734

P( x

4) = 0.7734

(35)

4-35

4-7 The Normal Approximation of Binomial

4-7 The Normal Approximation of Binomial

Distribution

Distribution

10 5

0 0.3

0.2

0.1

0.0

X

f(x

)

Normal Distribution:

= 5.5,

= 1.6583

11 10 9 8 7 6 5 4 3 2 1 0 0.2

0.1

0.0

X

P

(x

)

Binomial Distribution: n = 11, p = 0.50

The normal distribution with

 = 5.5

and

 = 1.6583

is a closer

approximation to the binomial with

n = 11

and

p = 0.50

.

The normal distribution with

= 5.5

and

= 1.6583

is a closer

approximation to the binomial with

n = 11

and

p = 0.50

.

P(x < 4.5) = 0.2732

(36)

or:

NOTE:

If p is either small (close to 0) or large (close to 1), use the

Poisson approximation.

NOTE:

If p is either small (close to 0) or large (close to 1), use the

Poisson approximation.

Using the Normal Distribution

Using the Normal Distribution

P a

X

b

P

a np

np

p

Z

b np

np

p

(

)

(

)

(

)

 

1

1

for large (n 50) and not too close to 0 or 1.00

n

p

P a

X b

P

a

np

np

p

Z

b

np

np

p

(

)

.

(

)

.

(

)

 

0 5

1

0 5

1

(37)

4-37

Using the Template for Normal Approximation

Using the Template for Normal Approximation

of the Binomial Distribution

Gambar

Table area for 2.47

Referensi

Dokumen terkait

informasi, maka diperlukan pengolahan data (Notoatmodjo, 2010). Beberapa kegiatan yang dilakukan dalam pengolahan data oleh. peneliti yaitu : Editing, Coding,

Penelitian akan dibatasi pada ketergantungan kecepatan rambat gelombang dalam bakso kakap berdasarkan pengaturan konsentrasi formalin dengan frekuensi kerja

Keluarga Bapak I Wayan Sudiarsa tergolong keluarga berekonomi menengah kebawah dimana pendapatan utama keluarga ini bersumber dari bertani rumput laut dan hasil bapak I Wayan

[r]

Misalkan undang-undang tentang investasi menjamin bahwa negaranya tidak akan melakukan nasionalisasi pada perusahaan investor asing, pemberian kepastian tentang

Debitur yang meninggal dunia pada masa pengembalian kredit pada LPD Desa Kaba-Kaba pelunasan kreditnya akan dilakukan oleh pihak asuransi jiwa kredit karena debitur

Efektivitas penggunaan metode pembelajaran kooperatif tipe Numbered Heads Together dapat dilihat dari nilai skor gain. Skor gain pada kelompok eksperimen menunjukkan

Tujuan penelitian ini adalah: (1) menemukan variasi substitusi tepung ubi jalar ungu pada formula kue semprit tepung ubi jalar ungu; (2) mengetahui tingkat kesukaan