• Tidak ada hasil yang ditemukan

ناریا ینابغاب مولع

N/A
N/A
Protected

Academic year: 2024

Membagikan "ناریا ینابغاب مولع"

Copied!
12
0
0

Teks penuh

(1)

53 2

1401 ) 464 - 453

( DOI: 10.22059/ijhs.2021.314346.1875

* Corresponding author E-mail: [email protected]

:

! "# $ %& ' &

( )#* #+ ,-./ 0 1 2

1 3#

15 675 38 9

2

7# < 9*

,1> ! 93 2 ?

# 1 4

1 2 3 .

!

4 . #$ %& '( )*

!

:,- ! .! /) 4

/ 10 / 1399 - :5 !67 .! / 9

/ 8 / 1400 (

0 #"A

:; <= >$? @* A! . # ;( # B CD #%; E* F >( G )* H >( 5 I J P1

P2 F1 F2 BC1

) # = K 6L MJ/ , 7 A!N #O / BC2 S10×P25

. = #( ! >O P & ,QR S > T/ ( MU

*

CD V >( W ( * X QR <! * Y . = #( ! C (> R * * 6( $/ U * $/) Y

Z ( [ & G? O P / > ( #- \/ :* U

1398

#)$* X Q/ ]! . = :; A (

P & S U

* Y .,= D >O Z * ^ E* ^ E* U

( >@( # ! C- _ ! . ( ,QR A! ( ; 7 D # `

#* <)!C N V ` > #)$* A! >( ( K ( ( , VU X QR a . = ( X QR A! %T( ( #% )* 5 /

! % U . = U * N ( _! U X QR >VU S F1

,b

!67 #R \K

>( N ( X QR >VU ( , VU > *Y ,

>( >D / ( A! ( )( . ( X QR %T( I J :; A * C ? Y :R ` ]!

,QR H! >( X QR # B bY Y ( U

/ >O P & >( = X >( W ( *

#* / .,- >( I J 5 /

0$

#6 2

! C- b I J :

; 7 , %? L b # ,b

!67

#R \K .

Evaluation of the genes actions on growth habits of pumpkin in crossing of zucchini and hull-less seeded pumpkin using generation mean analysis

Sima Davoodi, Jamal-Ali Olfati2*, Babak Rabiei3, Atefeh Sabouri2 and Ghaffar Kiani4

1, 2, 3. Ph. D. Student, Associat Professor and Professor, Faculty of Agricultural Science, University of Guilan, Guilan, Iran 4. Associate Professor, Sari University of Agricultural Sciences and Natural Resources, Sari, Iran

(Received: Dec. 24, 2020- Accepted: Oct. 31, 2021)

ABSTRACT

Selecting an appropriate breeding method depends on the type and relative proportion of genetic components. In this study, six generations P1, P2, F1, F2, BC1 and BC2 from a cross between two cucurbita varieties crossing of hull-less seed pumpkin and squash, S10×P25, were constructed and evaluated for main stem length. Yield and its components (number of fruit per hectare, number of seeds per fruit, fruit weightand 100- seed weight) were also evaluated. The experiment was carried out in a randomized complete blocks design with three replications in 2019. The results showed significant differences among generations for main stem length. Scalingand Chi-square (χ2) tests suggests the presence of digenic epistasis for this trait. According to the results,additive variance was more important for most of the traits, meaning that selection is a good way to improve these traits.High heterosis was observed in the F1 hybrid for all of the traits. High narrow-sense heritability estimates were shown for all of the traits. Therefore, according to the results of estimating the genetic effects of traits, especially traits related to growth habit and reaching a shorter stem length, the selection method can be used.

Keywords: Additive effect, dominant effect, epistasis, narrow-sense heritability, selection.

(2)

,+ C+

'5 *$ 6 2% 3 7 89: ; ! '< *$

)

Cucurbitaceae

( ) =#> /

Cucurbita

!; ( .*

=#> ?@

14 7 .A 7%2< @/ B 7%2<

7%2<

' 2$2$ =#>

20 C /2; $ AD>

!;

) *#

Nesom, 2011

.(

*$ A' 79 > /

!;

E 7F@ G < H ' 7 2 A'I :J

H@K%L B# 7 , M ;

A' 7$ $ 6 L

!% J N% ?@ / O1; PL PQ> N% /

7 7@ R 2#) 7 '5 *$ @ !S #;

$

7 J <

!;

!<T@ UV 7: 2 8'WM QI 2 7 ! X; ; 6 '< ?@ *

!;

)

Madadkhah et al., 2017, Fereshtian et al.,

.(2020

) A ?F< < ! '< SI Y *$

Loy,

(2004

</ A:'SZ FJ 6 < < '< .

[' 2%& ?' GK';L / @/ *#

\9 ];

*@*> ( S'$ C *; 2Z 7 '< / ^2% ?@ 7:; >

!; _@ !%&

/ ,- . *@*> !%& `'$ <

7$ A !S #; K FJ 6 < < '< GK';L E ^2# _@ 7 _#;

!; C/

) <

Meybodi, 2007

(

.

!F@ ( D- 6 < 7 *$ ! ' %& ^2#

!a !F@ / 7W *$ .

!%E2Z !#Y

N% ?@ / A $ !9 $ AF$ N% /

! ^2#

!<T@ b MI 7 'N%

H ! @&2I2J 2;

/ !:' UV ?'#c

</

A $ AF$

Savage et al., 2015)

.(

d 2; 7 J < ( 2- ( W'WM

!<T@

*$ 6 '< ?@

!;

7S#> / 2

6 < !D9 ];

( ) ':; ?@ / ! @ . $ *#

7 2 *

*$ d ?@ 7$ A 6 < 7

7 2

!; H' W 6*%

.*%2 H0 7 2

70 '; !@

6 <

H0 *% 6 2$

6*%

B ! < 7$ *# 70 *#c @ e@ !% '<

!; " f ?';/ / @/ UV * ; *##$

)

Hassandokht, 2012

7%2< .(

g$ !F.

7 2 !9 h: !I *% ,@2Z 6*% !@

!

H0 7 ) ! 23 *$ 6T@

Cucurbita pepo L.

var. pepo

7$ A 6* 6*@ H$ ; * ( ) ( L

ei'R 7 J ,'9M 7D'j 6/ *% b MI /

*%

)

Peyvast, 2006

'; ! 2$ AD- .(

6 <

7 @

7 2 * ( ) ! S) 79' 7 ! 23 *$

!%& 6 a@ >

$ Bu

!; " # 7: 2 ,. ; 7$ 2

!; k P29f; , 7 6 '<

) *#$

Paris, 2002; Wu et

al., 2007

& e ! S) 7 .(

7 2 * !<T@ Bu

" #$ *$ 6*% * , W; H$ ;

!;

*#$

.(Paris & Kabelka, 2009; Shifriss, 1947)

Q

@ C $ l% ! 23 *$ 7%2<

6 2 A3 2#

m n $ ! 2I *#c L 62'; C .A /

7 ! 2c A]

7@ /) !:9o*#c ( 2-

!; ( .*

,<

Hc R L , !Z ]; AD9$ 6 2$

!; p]F;

) *%2

Darrudi et al., 2018

.(

!% J ^2# K'% Q ^2% N% / *$

/ ! @ 7$ *#

HX;

L ?@

* Q

*. 7$ A B 2R 100

23 BX> / ,S0 "

7#';/ * ,- . *$ C 0 / !3 23 7

7 $

?@ Q A'D'$ 2SX AX> T%

) $ H J '< / 6 <

Darrudi et al., 2018

.(

Q B 2R ,' F AD- QY $ H] A 2R *$

q 2 !%& 6 a@ >

!; " #$ n

7 L [' 2#J 2

!; *'R 2Xj P29f; ( 2- ) *#$

Zraidi et al.,

2003, 2007

G/ QY $ H] A 2R *$ .(

r s; b MI 7 A !% J

!@

!$ 23

QY $ H] A 2R *$ .A 7>2 23 ' )

Cucurbita pepo L. var. pepo subsp. styriaca

(

7 7$ A ! '<

2>2; P c *' 7V

!@ t@ #- E ?'u R K'; 7% ?Y ) A 6 $ *'R ! X; 6 a@ > !@ QY

Hosseinzadeh

& Amjadi-Souraki, 2012

.(

62';

A 2R *$

7% !_% % 7 ,@ ; / QY $ H]

?@

!%2 @/ KS l% 7 62';

HX; / .A ?@

!<T@

7% 6 '< ?@

!; L A 2R *0 J *

)

Zraidi et al., 2007

( K'% r s; N% / *$ ^2% ?@ .

) !%E2Z ! ;*0

Hosseinzadeh & Amjadi-

Souraki, 2012

!9) .(

KS ^ 2% *'I2 6 a@ > HY

7S @ !% X> / *'I2 b MI 7 L

?@ E *'I2 AF$ @/ UV 7 7>2

(3)

7 $ 2#$ 2F$ (E2sM;

23 T%

(E2sM; ?@ A'D'$ Q *'I2 7#';/ !X>2 .A 7 J a% ( 2-

AF$

$

*$

A 2R H]

QY $ 2F$

; F' / [' 2%&

!;2 7$

( )

*

6*%

!;

*#

6 D

!;

2 7$

7_' % 7 ,'I

H$

H$

7 2 9 )

! $ ,- .

!;

2 . /

!J Z

*$

A 2R H]

QY $

! @ /

! E2sM;

A 7$

A'

!@E / N%

G/

!@ QY

!@

A

;

! @ / (1 F;

6* )

*'I2

?@

"2sM;

9 )

?'@ R L 7 ,'I

\:o

62';

! A / L

!5 >

7$

'<

6 '

'5 *$

9 ) 7

K';

@/

kv ; / H$

( )

* 7%2<

A

! 2SX

( )

* 7 2 H'N#

` #;

?@

H$

AF$

!;

2 9 ) 6 '<

*.

UV B@ KJ .

! @ / ,; 2) , 0 7>2 k2;

9 )

"2sM;

H$

AF$

)

*:

6 '<

*.

UV (

!;

/ *

WWM; G K< 8SZ !J Z / !V'M; ; R

P29V; 2Z 7 n 3 PL hJ 2% 79 >

A': >

! % 6 D ` #; % H$

2

!; B $ 9 ) ?@ #

* @ )

Rassam et al.,

2007; El-seyed et al., 2011

.(

H'N#

K';

A

"2sM;

7>2 7 / '%

/ H

!;

2

H$

AF$

; A3 @QR )

Cushman

et al., 2004

(.

H$

7 2

!;

*% 2

"2sM;

/ 8@ Z

k , W ; ( JL

AM 'k 0

* 7 2Z 7$

e@ K%

* 79- J 7 2

! E2sM;

A@K;

! 0 E

\9) /

@ A'- 3

" #$

-

6*##$

\9) /

H' 23 A

7$

7 A@ @*;

\9) /

* 6 D / 2;

!@ ' ' e $

!;

*#$

)

Bahlgerdi, 2014;

(

?@ #

2 $ J

!) /

*#% ; 79- J

\@

,- 2J 7 2

? ; A

e@

G 'Y

!@ ' ' B $

k

\9) /

9 )

"2sM;

* )

Buhler,

.(2009

7

! S) B@ KJ

UV m B $ 2S)

2%

/ ';

m 79- J

H$

\@

@ H$

E 7 2

!;

2

* 7: 2

\9) /

P2$

$ )

Doane et al., 2009; Ghorbani et al.,

(.2017

H

?'#c B $ 79- J

\@

H$

E

7 2 ']S B $

!;

* /

?@

8@ Z w)

B@ KJ 6 /

!J s;

PL

& % 2>2;

B@ KJ

9 )

!I2sM;

6 / E

!;

<

)

Walker &

Buchanan, 1982

(.

7 C 0 AF$ '3

*@ S'

F1

6*#@ KJ 2Z 7 7%2<

$ AF$

7%2< 6T@ 7 6*

C. pepo

C 0 .A 6* 7 >

FJ 6 < /L *% C 0 6/ *% 7 *@ *@ S' H *# 7 6 /

!<T@ @ ?'#c

A; W; E A'D'$ ,g; HX;

'

.*# A:#- L J ` #; </

/

!; *$ *@ S' @ K;

7 '% * ( ) 7 2

E !@ $ *M;

6 < </

A; W;

B#

!V'M; ! @&2I2' A'D'$ B@ KJ

!$ 23 7@Qf !@ $ ( *0 B@ KJ

*#% ; E

$ E *'52#

$ 6 E 9 ) )

Lopez,

2004; Elias et al., 2020

( *$ ? ?@ # .

8@ Z / 7$ 7 2 *M; * QY $ H] A 2R @ ?' !01 7%2<

!; 2 ,- . _#; *% 2

' *'I2 A'J j "2sM; ?@ / !; 0 *'I2 7 7#';/ 2 E G/ "2sM; ?@ ( -

.*#$ H J K'%

*I !01 / ,- . + % E2 :;

2#) AM 7$ A F' ( *0 7 F; % =@/ A r :; *@ S' ( *0 @ =@/

!01 / ,- . " , % J 9 ) A *I 7 AS % @ ?@*I ?'a% '; 7 @ W;

)

Ranjbar, 2012

.(

7 G e@ !@ $ 7DIx; K'; 7 T%

!a ^2# K> ! ' %& 'Y ! ' %&

` #;

r* 7 *' !.1- G ?@

2 7 J < $ 7 F' 9 ) !#:@ O1- !@ X%

) Anant, 2018

% R .(

' : > , ' R A

@

$ 7

@ !

/ B#@K<

@ ( k !

%&

' KJ !

@ SI Y !F '

A

R' A L , 0 AD- /

(Gonçalves et al., 2011)

! $ ( D- 2SX .

/ ^1Z 9 ) *#% ;

@ , ) ^2% ! ' %& =%

&

Ak @QR A o L y K>

(4)

)

Kumar & Wehner, 2013

.(

K_

@

; 7 ' a%

' , % ?

# ' *;L $ ! *#% ; !%& HX; ( k L

KJ ( k

@ SI Y !F '

L B#$ H A /

!; ! $ ( D- ) *

(Amaefula et al., 2014

G .

, % ?'a% '; 7@K_

q 2

Jinks & Jones )

(1958

Hayman )

(1958 Mather & Jinks )

q (1982

7 .A 6* 6 62M% / ^1Z !9$ 2Z

, )

&

3 ' R " C < ( D- / , '

SF

7 r * 2Z 7 A T%

HN) B] < 7$

KJ ^2% / !%& ( k

@ -2 * !F '

!; 7 *% 2

Z / !.1-

@ K< 8

@ W ; B#

' AD- H

7; N% 2;

@ SI Y ^2% / !%& ( k < * '

* A

-2 ' 7

@

; 7$ A ? '

I2 AX> !.1- '

*

C 0 ' S

@ ) *#$ *'R 7; *

Bernardo, 2002; Azizi

et al., 2006; Rebolloza, 2016 .(

! ? o * G1 8'WM ?@ ?@ / ( k

&

7 2 "2Z HX; AD- 6*##$ " #$

, % *$ '; 2' *@ S' 8@ Z / 6* _@

*$ ! 23 ( D- #$ QY $ H] A 2R

( D- ?@ O1- 2s3 9 ) 7 z2 ; [' 2%&

. < 75 $ 7; % *$

D +

2

) ! 23 *$ ^2% / *$ ?@E A 2R *$ (P25

) QY $ H]

7 (S10

7 `' !<T@ 2 ,'I

AX> Q QY $ 7 2R *M; * m

'<

B@ ;/L .*%* P ] % 7) K;

_@ AX>

A': >

6 ASk 7) K;

,sJ 7 !Z

" X !I 2 ; AF$

98 - 1396

6 aF% / F$ C29) 6* F% !F TR 7) K;

Q *'I2 2N#; 7 " " .* C _% 1'<

) " , %

@ r* (F1

!#:@ N% 2; !<T@ _

QY $ Q 7 2R 7 2 *M; * !}' 2%&

) QY $ H] A 2R *$ ?@E *$ (S10

) ! 23

" !Z 7$ (P25

6* F% ,S0

) *% 2 6* / pI 3 / F$ C29)

Davoodi et

al., 2015

H ' 79. ; ?@ .*%* 6 !01 (

7) K; AF$

A $ 79- J !D@ ( 2- 7

\@ ?' ;

\@ ; e@

N%

) * 7 J <

Latifi et al., 2012

A ,. ; (

6 V0 ' L H ' >

~I ; / 6 D

H !F 2R AS0 ; ?'#c

` #; C/E !) /

" .* C _% * ,. ; C !Z C

) " , % Q / *: AF$ 7) K; (F1

7 2 ) C , % Q *'I2 AX> ,- .

(F2

7 2 / a@ *: .*%* ?F< 23 , %

K'%F1

) ! F< !01 7'I *I

Back cross

(

, % *%*

) ! F< !01

BC1

7'X (BC2

62'; ,' F / *: .*%2 !01 / ,- .

62'; *' 62'; ,; $ •29 79. ; 7

A

` #; q@ AJ < ( 2- '< Q 6*

?@* .* *Xa% *: 79. ; 6 D 7'I *I ,; ) ,- . , % B Q `'

7 2#)

P1

7 P2

, % 6

F1 F2 BC1

(BC2

C2 "

n29 O Z `I 0 ,; $

2; ( D- AF$ 7) K; 7 !J s / 62'; *: !9- 70 "2Z ,; N%

) 7% *- / 62'; Q *: 62';

UPOV,

6/ *% (2016

7 .* '<

6/ *% 2N#;

( D- '<

7%2 % P ] % , % / !J s

7 *%*

2Z

*: " , % ?@*I / C *$ / 7$

10 7 2

30

!01 / C *$ / ^2 _; 7 2 -

, % ! F<

*: F2

30 7 2

90 .* 7 J < N% ^2 _; 7 2

K_ 2N#; 7

@ 6 7 /

@

%& kL ! '

!

D- 6*##$ " #$

; G / 7:I V; 2; (

>

' ) K #

Mather & Jinks, 1982

8SZ ( 7V

) 1 (

:* 6 D

) 1 (

Y= m + α [d] +β [h] + α2[i] + 2αβ[j] + β2[l]

7V ?@

; y

' a%

' ?

@ , % e ?'a% '; m

, % C

@ !01 e L [d]

@ !F@ KJ kL *#

L [h]

@ SI Y kL *#

' A KJ / 'R *#@L [i]

@

!F

×

KJ

@ !F !F@ KJ / 'R *#@L [j]

A'SI Y × [l]

SI Y / 'R *#@L '

A SI Y ×

' A

α β α2 2αβ

β2

o

@ `

@

%& ; R / e '

; "*; !

>

'

*# K # .

(5)

2;/L / W;

' d

(Scaling Test)

2;/L

R kL ' d / ) q

2 ) !I ( 5 ! (

!#:;

*W; 7S M;

) q d t

6 !I (

) 9 L 7 @ W; ( ) * 6 D " *>t

Mather &

Jinks, 1982

:(

) 2 (

A = P1+F1−2BC1

) 3 (

B = P2+F1−2BC

) 4 (

C =P1+P2 +2F 14F2

) 5 (

D = 2F2 −BC1 –BC2

) 6 (

tA=

) 7 (

tB=

) 8 (

tC=

) 9 (

tD=

kL L 2N#; 7

&

( D- 6*##$ " #$

% 7:I V; 2;

' ) q / K 10

) !I ( 15 * 6 D (

)

Mather & Jinks, 1982

:(

) 10 (

m=0.5P1+ 0.5P2+ 4F2 − 2BC1− 2BC

) 11 (

d = 0.5P1−0.5P2

) 12 (

h = 6BC1+6BC2−8F2−F1−1.5P1−1.5P2

) 13 (

i = 2(BC1+BC2 ) – 4F 2

) 14 (

j = 2(BC1– BC2 ) – P1+P2

j=2BC1– P1– 2BC2+P2

) 15 (

l = P1 +P 2 + 2F 1 +4F2 – 4BC1– 4BC2 /

@ X !

@

%& "*; ? '

6*##$ " #$ !

@

% 7:I V; 2; ( D- / e '

W; 2;/L / K '

n F; d

)

Joint Scalling Test

) 2 $ 2;/L d ( chi-

squared

(

; ?' AW V; K'; 6 D '

a%

' 6* F; ?

, % 6*

; 7Z2 ; '

a%

' L N % 2; ? 7$)

!#:; 6* L @ W; d ; R

! ' %&

7 E

!; A .* 2;/L ;L b MI / (*@L

K>

@ KJ =%

@ ) !F

VD

SI Y ( ' ) A

VH

(

M;

' ) !V

VE

/ e@ !}' 2#J ^2# 6*##$ " #$ (

) q d K'% 7:I V; 2; ( D- 16

) !I ( 18 (

) *%* 7S M;

Kearsey & Pooni, 1996

( :

) 16 J =% @ (

!F@ K

VD = 2 VF2 – (VBC1 +VBC2)

) 17 A'SI Y =% @ (

VH = VF2 – VD – VE

) 7V 18

!V'M; =% @ (

VE = (VP1 + VP2 + VF1)

: '' SI Y ( J M% ? '

; A !%&

; ( D ; '

a%

' SI Y 7> ? '

) 7V d A 19

(

*@ < L

(Mather & Jinks, 1982)

:

) 19 (

) ½

(H/D)1/2= ( [ ][ ]

Ak @QR / 6 D !-2s3 !;2 )

q ) 20 (

(Falconer & Mackay, 1996)

) 21 (

)

Mather & Jinks, 1982

* 7S M; ( :

) 20 (

h2b=

) 21 (

h2n=

6 2 " ; % 2;/L KJ C % / 6 D

K_ !; SPSS

@ 7 6 D ! ' %& ;L

C % / KJ ) AJ < C _% SAS

Kang, 2003

( ?'a% '; .

, % C ( * F;

UV !$2 G 7 K'%

" . 5 % 1

* 2;/L % .

EF G-

6 " ; % t@/2 2> ! 6/ *%

'<

2;/L d 6*

!<*'F$ !aI2c

C % / 6 D KJ

6 7$ F% SPSS

" ; % t@/2 7:I V; 2; ( D- 7 7 z2 ; 6 =% @ 7@K_ ‚@ % .*% 2 7$ F%

( D

!#:;

"2Z ( D- 6* 7'X , % B ?' " . UV Q *: 62'; / 70 1

%

7% *- / 62'; *: ( D- " . UV 5

" *>) A 2> % 1

!#:; .(

, % ?' ( D * ! ' %& 7@K_ C _%

L ƒ 2 62M% !

; .* @QR

" *>) ( D- ':; V3 ?'a% '; ! @/

2 (

!#:; ( D 7$ F%

?@*I ?'a% '; ?'

=@/ 6*@*R ( D- 7 A 2> + % , % ?'a% '; 7$ !#:; ?@ 7 * 6* F; *%

7 ) 7:I V; 2; ( D- 7 F1

(70 "2Z K>

'; / F' A U'o2 7 C/E . 2 ?@*I ?'a%

!.1- r* 7 #@ 7 7>2 70 "2Z AD- 7V ?@ # A 70 "2Z B $ AD- ?@

(6)

$ 70 "2Z *@*> , % + % 7$ ! 2- 6* F; . 2 * 23 P29V; *# 23 ?@*I 7 AS % 6/ *% ‚@ % F% AD- ?@ '<

70 "2Z 7$

) " , % 33

/ 222

! % ?@*I ?'a% '; 7 AS % ( ;

) 98 / 260

! % r* 7 7>2 7$ AJ @ B $ ( ;

7 F; !F TR . 2 P29V; N% 2;

Kuabara

)

?' !01 / 6 D (1984

7%2<

!5 29. *$

×

* ! 2$ R ( ) A %2 ! 23 *$

*$ /

H .*#$ ,W #; !5 29. *$ 7 !@ ; ?@ G/ ?'#c

!% *#c B $ " , % 7 AS % C , % AD- 7 2 7 ! ' b MI 7 t0 A *%

*

+ % ?@ .* ,- . ! 29V; A': > *M;

!; ?@*I ?'a% '; 7 AS % kL 2> 6*# F% *% 2

A'SI Y

†2J @ + % .* ( D- " #$ A'SI Y

!01 / ,- . *I ! F< !01 !#:@ ! F<

) "

BC1=P1×F1=SP×P

C *I (

)

BC2=P2×F1=SP×S

7 AS % 7 2 "2Z K'; K'% (

7%2< 7 F% B $ 6*% * *I 7$

; ?@*I ?'a% '; / F' 7 2 "2Z *I / $

. 2 6*% *

?'a% '; 62'; *: AD- 2;

F1

?@*I ?'a% '; / F' *I !01 / ,- . ?@ # 2 F' G/ *I / F' ! . 6*@*R AD- ?@

Heterobeltiosis

=@/ )

( *I 7 AS % 62'; *: ?'a% '; .* 6* F;

" , % ?'a% '; 7 AS % K'% C , % ?@*I ?'a% '; / F' 7 9 A *% !F $ X# 7%

!01 . 2 " , % G/ *I G/

62'; *: ?'a% '; " *I ! F<

1 ; ?@*I ?'a% '; / F' *I ! F< !0

AD- 7V . 2 *I G/ / $ C ?@*I ?'a% '; / F' " , % ?'a% '; 62'; / 2 E ?'a% '; *I / F' ! . 7 AS % =@/ 6*@*R H AD- ?@ ?@ #

7 J @ 7$ * _@ *I WWM; @

A AW V;

=@/ WWM; G K< d

!3 7V *I ?@*I ?'a% '; 7 AS % "2Z 7 2 62'; *: *#% ; 7% *$ ( D- ) * 6* F; 70

Al-Ballat, 2008; Al-Araby,

2010; Najvot et al., 2018

.(

?'a% ';

F2

7 AS %

F1

7$ F% B $

!;

/ ,- . kL 7 2

B@23 R 6*@*R 2> !#F< 23 K';L

)

Inbreeding depression

+ % 7V . $ 6 (

!01 / ,- . AD- ?@ G/ ! F<

!I . B@ KJ " *I ! F< !01 7$

2; . F% B $ C *I ! F< !01

*: AD- / F' " , % ?'a% '; K'% Q

E ?'a% '; *I / F' ?@*I ?'a% ';

.A =@/2' 9 6*@*R 2> / F% 2 F% B $ " , % 7 AS % H C , % ?'a% ';

!; 7$

F% *% 2 !#F< 23 / ,- . kL 6*#

B@23 R 6*@*R 2>

K';L + % .*

!01 / ,- . 7 AS % AD- G/ ! F<

" *>) F% B@ KJ ?@*I ?'a% ';

2 .(

2; d 'W; 2;/L / ,- . ‚@ % d

~' Q *: 62'; *: ( D- / e@

!#:; d 'W; ; R 2;/L ?@ t0 *F%

7$ F%

2> / 'R 2$Q; ( D- 7V

kL A X 7_' % / #' Z ; *%

"2Z ( D- 2; . 2 2;/L 7S M; / 'R

!#:; 7% *- / 62'; / !9- 70 *F%

/ 'R 2> " . / F% ; R / !3 "2Z ( D- 2; 7$ 2Z 7 A / 70

; R 62';

" . UV B

1

!#:; % 7$ *

F% E . 6*#

!F@ KJ ^2% / , W ; k 2>

H .A A'SI Y / AD- 7V ?'#c

!#:; 7% *- ; R *

" . UV A

5 %

!;

F% *% 2 !F@ KJ ^2% / , W ; k " . 6*#

Y " *>) * A'SI 3

.(

7$ F% n F; d 'W; 2;/L ‚@ % *W; 62'; / !9- 70 "2Z ( D- 7V

!#:; ; R 7 "*; d 52 $ 2

7_' % A / 'R kL 2> A' / F%

‚#R 70 "2Z ; R Xc "*; ! ; R

!#:; / 'R kL 62'; / / .*

7 "*; 62'; *: AD- 7V !J Z

(7)

‚#R "*; ! 7_' % % A@ D$ ; R *- e@ " . UV 52 $ *W; ; R

!#:;

.A / 'R kL 2> / F% 7$ * AD- 7V ; Q 7% *- / Q *:

!#:; 'Y ; R 7 "*; 52 $ *W;

2> ; R 7 "*; A@ D$ / F% 7$ 2 K'% d 'W; 2;/L ‚@ % 7$ A !9- ( k .A AW V;

" *>

1 . , % =% @ 7@K_ ‚@ % r ];

( D- !3 QY $ H] A 2R *$ ! 23 *$ !01 / ,- .

Table 1. Results of variance analysis effect of different generations resulting from the cross between zucchini and hull-less seeded pumpkin on some traits.

Source of variation d.f.

Means of square

Main stem length Number of fruit per hectare hectarehectaremeter Fruit weigtht Number of seed per fruit 100-seed weight

Replication 2 2396.1146* 555293.253ns 9348.804ns 432.736ns 1.521ns

Generation 5 30047.1615** 1159419.853* 291893.757** 5147.777** 13.567*

Error 10 528.6280 260663.266 27880.026 347.097 2.747

C.V(%) 8.98 8.15 8.291 7.83 11.86

`' 7 :** * ns

2S

!#:; ( D

!#:; ( D " . UV

5 1 .*-

ns, *, **: Non-significantly difference and significantly difference at 5 and 1% probability level, respectively.

" *>

2 .

?'a% '; 7 @ W;

, % QY $ H] A 2R *$ ! 23 *$ !01 / ,- . \9 ];

.

Table 2. Mean comparison of different generations resulting from the cross between zucchini and hull-less seeded pumpkin.

Generation Main stem length (cm) Number of fruit per hectare Fruit weight (g) Number of seed per fruit 100-seed weight (g)

P1 415.833±1.702 5833.33±166.66 1819.80±2.91 216.614±0.443 10.36±0.066

P2 106.133±1.313 6166.67±166.66 2057.17±3.426 176.276±0.473 15.266±0.145

F1 222.333±6.872 6200±200 2629.84±61.832 293.330±1.922 13.666±0.666

F2 242.677±33.097 7411.11±496.961 2058.93±160.448 234.451±18.815 16.133±1.474 BC1 281.644±21.929 6338.89±427.344 2254.48±131.271 272.877±12.196 15.434±1.039 BC2 266.177±7.180 5622.22±347.122 1657.72±128.325 233.275±14.691 12.953±1.166

HSD (0.05) 65.204 1447.9 532.12 52.835 4.70

HSD (0.01) 85.322 1894.6 696.3 69.137 6.151

" *>

3 . 2;/L , % \9 ]; ( D- ! ' %& k d 'W;

QY $ H] A 2R *$ ! 23 *$ !01 / ,- . \9 ];

.

Table 3. Scaling test related to genetic effects for different generations resulting from the cross between zucchini and hull-less seeded pumpkin.

Scale Main

stem length

Number of fruit per hectare

Fruit weight

Number of seed per fruit

100-seed weight

A 74.878ns -644.45ns -59.32ns -35.81ns -6.834*

B -203.888** 1122.23ns 137.57** 3.056ns 3.026ns

C -4.076ns -5244.44ns 900.93ns 41.746ns -11.568ns

D -62.467ns 2861.11ns 205.66ns 37.25ns 3.88ns

`' 7 :** * ns

2S%

!#:; ( D

!#:; ( D " . UV

5 *- 1 .*-

!#:; O2V ! d

7 AS % 6* 7S M;t

.A 6* 6 F% " *>t

ns, *, **: Non-significantly differnce and significantly difference at 5 and 1% probability level, respectively.

Significance levels are shown based on the t-test compared to the table t.

(8)

( D- / e@ 6*##$ " #$ ! ' %& ; R " *> 7:I V; 2;

4 .A 6* 7@

!$ . ‚@ %

!9- 70 "2Z ( D- 7V 7$ A L / *- e@ UV !F@ KJ yK> 7% *- /

!#:;

!I . 2

!#:; 'Y k A'SI Y yK> 7$

!F@ KJ , W ; k 7$ A !I . ?@ A

!#:; !9- 70 "2Z AD- 7V A'SI Y 7V .*

yK> 62'; *: AD-

A'SI Y !F@ KJ !F@ KJ , W ; k A'SI Y

!#:; A'SI Y

!I . * !F@ KJ yK> 7$

!#:; 'Y 7 J @ ‚@ % ?@ 2

WWM; @

AW V; *$ \9 ]; ( D- ! ' %& kL 7V ) A

Najvot et al., 2018

D- .(

^2% 7$ !

!% KJ L !F@ KJ ^2% & !F@ KJ 'Y , ) * 2]% C/E !@ $ 6 @ D% B#@K< " ) J P ] % 7$ A X 2; ?@ A

O Z / 7 J < ( 2- B@ ;/L `I 0 !@

7 @ *'I2 @ ,IL @/ < 6 D *@ S'

G ?@

ˆD. !%E2Z (*; ! 2a@/

!a 2'R ? ; 7_' % 6*

6 D

) 2> ( '-2s3 ?@ /

Paris et al., 2003

.(

/

L k 7$ !@ >

A'SI Y !F@ KJ

&

7 e@

*# A'Sg , 0 !01 !#F< 23 6 / `'

!; ?@ # 2

!#F< 23 / ,- . + %

=} P ] % k / 6 D

A'SI Y

&

7 2 / AD- 7V . !01 P29V;

!#:; 'Y !F@ KJ A'SI Y ( k 62';

( k ;

A'SI Y A'SI Y A'SI Y !F@ KJ , W ;

!#:;

Q *: AD- 2; .*

k qWJ

!#:; !F@ KJ . 2

A;1) ] \I ];

] [h

2> 6*# F% [l

( D- 7 7V (\) h;) 7% < A'SI Y k B $ / 'R / , ?@ .A 7:I V; 2;

, % C , % ^2# K';

`S L / *:

!; P ] % *#@ J "1 3 P ] % <

'3 7 *@ !%& A'Sg / !@E UV 7 ! ) 2 7 3 *%

Anant, 2018

.(

Ak 6 7 =% @ K>

7> @QR

! @/ 7:I V; 2; ( D- / e@ A'SI Y " *>

5 7 7$ F% ‚@ % .A 6* 7@

A'SI Y =% @ / !F@ KJ =% @ K'; ( D- P ] % ASg; 'k *@2; K'% 7_' % ?@ 7$ 2 F' WWM; @ ‚@ % 7$ A ( D- ?@ O1- ! 23 *$ 9 ) 7 z2 ; ( D- 7V

A AW V; QY $ H] A 2R *$

)

Najvot,

2018; Pandey & Rao, 2010

( 8SZ 2; !3 .

K> ! !Z WWM; G K<

! ' %& =% @

A' / !_@ % *$ \9 ]; ( D- 7V * ,- . Q / AD- 7V !F@ KJ =% @

)

Villanueva-Verduzco et al., 2020

(.

H ?'#c

!V'M; =% @ ! 2; ( D- 7 7V !F@ KJ ! ' %& =% @ / $ ' 6* L

A'SI Y ( D- ?@ q'M; H$ 'k a% ' ?@ 2

!; B@ ;/L ?@

( D- g$ 7V .*

Ak

‹ S % !;2 ) @QR !J Z / . 2 E

Ak ( D- g$ 7V E !-2s3 @QR

F%

7:I V; 2; A': > 7$ A ?@ 6*#

!; ( D- ?@ d B#@K<

& 6 / *% 2 ! ' %

6*##$ ' S@ W [' 2#J @/ *#$ _@ ! 23 A [' 2%&

)

Javanmard et al., 2018

.(

(9)

" *>

4 .

! 2; ( D- ! ' %& ( k L , %

QY $ H] A 2R *$ ! 23 *$ !01 / ,- . \9 ];

.

Table 4. Estimation of genetic effects for different generations resulting from the cross between zucchini and hull-less seeded pumpkin for the studied traits.

Genetic components

Main stem length

Number of fruit per hectare

Fruit weight

Number of seed per fruit

100-seed weight

m 136.050ns 11722.213** 2349.811** 121.944* 20.576**

d 154.850** -166.66ns -118.682ns 20.168* -2.450**

h 340.226ns -11722.204** -1443.537ns 278.641ns -10.863ns

i 124.933ns -5722.213** -411.328ns - -

j -278.766** 1766.666ns 1430.881** - -

l -253.942ns 6199.990* 1723.563* - -

! 5.48ns 52.154** 3.568ns 1.560ns 1.156ns

`' 7 :** * ns

2S%

!#:; ( D

!#:; ( D " . UV

5 *- 1 .*-

, % ?'a% ';[m]

!01 / ,- .

[d]

[h]

[i]

[j]

!F@ KJ , W ; ( k A'SI Y !F@ KJ ( k 6*# F% `' 7 [l]

!F@ KJ !F@ KJ×

A'SI Y A'SI Y×

.A A'SI Y×

ns, *, **: Non-significantly differnce and significantly difference at 5 and 1% probability level, respectively.

m: is the mean of all generations in a cross, [d], [h], [i], [j], and [l] are the effects of genetic parameters; additive, dominance, additive ×additive epistasis, additive × dominance epistasis, and dominance × dominance epistasis, respectively.

!= Chi-Square

" *>

5 , % =% @ K> L . QY $ H] A 2R *$ ! 23 *$ !01 / ,- . \9 ];

.

Table 5. Estimation of generation variance components for different generations resulting from the cross between zucchini and hull-less seeded [umpkin for the studied traits.

Components of variance Main stem length

Number of fruit per hectare

Fruit weight

Number of seed per fruit

100-seed weight

Additive variance 2487.573** 207915.20** 106728.26** 2060.436** 11.442**

Dominance variance 186.7135** 89780.089** 80094.436** 110.664** 1.332ns

Environmental variance 51.853 95555.553 3843.541 4.116 0.469

Narrow-sense heritability 0.98 0.75 0.56 0.94 0.86

Barrow-sense heritability 0.91 0.52 0.98 0.99 0.96

Average degree of dominance 0.38 0.92 1.22 0.32 0.48

`' 7 :** ns

2S%

!#:; ( D

!#:; ( D UV

1 .*-

ns, **: Non-significantly differnce and significantly difference at 1% probability level, respectively.

G K< d ) Saad

! (2003

Ak @QR G/ ! 23 *$

Ak @QR !;2 )

/ F' 62'; *: 62'; / Ak

@QR !-2s3

! ' %& =% @ A' / F% E . 7$ 2 K> ! a@ !W'WM .A !F@KJ 'Y A'SI Y yK> 7$ F% *$ ( D- !3 ! ' %&

A' / !F@ KJ yK> 7 AS % 2 23 F'

)

All-Ballat, 2008

! 7#';/ a@ !F TR .(

7 2 62'; *: ( D- 7V *$ ! ' %& kL 62'; / ?'a% ';

Ak @QR / F' ( D- ?@

Ak @QR / E !-2s3 85

*;L A 7 %

)

Obiadalla-Ali, 2006; All-Ballat, 2008

.(

ASg;

7$ ( D- A'SI Y 7> 2

r M%

C2XD; ?@ 7 A ?@*I ?'a% '; / F1

r Z 7 ! 2; ( D- A'SI Y 7$ A 6 J † D A E ?'a% '; 7$ *I

A / F' 62'; / A'SI Y 7> q 2 ;.

F% E . 7$ 2 e@

6*#

6*@*R A'SI Y †2J

!; ( D- ?@

( D- ?@ 2; ?@ # *

, % B#@K<

A X 6 2S% k2; 7'I

, % / ,- . ‚@ % 7$ '< ( 2- *:

( D- ! ' %& kL ! WWM; a@ B TR H *$ \9 ];

!% 2R )

Aruah et al., 2010;

Najvot, 2016

( . ?'a% '; ! 2; !3

AD- 7V ,; $ A'SI Y / F% A'SI Y 7>

) A 70 "2Z

All-Ballat, 2008

a@ 2 / .(

62'; *: ( D- A'SI Y 7> q 2 ; 7$ 2 e@ / $ 7% *- / Q *:

F%

6*#

A 2R *I r Z 7 !S % A'SI Y

) QY $ H]

S10

*I A 7 2$Q; ( D- (

) ! 23 *$

P25

70 "2Z AD- (

F%

?@ !F@ KJ =% @ F' A' 6*#

QI 2 ( D-

!; E . B#@K< 2

, % . C _% 7'I

(10)

?'a% '; ! / ,- . ‚@ % 7 7>2

kL

HX; ( D- 2SX #$ ! 2; ( D- ! ' %&

7 6*@ 9 ) ( D- @ \:o X# 7% T%

9 ) 62'; 9 ) ( D- 7V 7 9 *F%

6* F; ?@*I ?'a% '; 7 AS % + % Q "2Z HX; AD- 79 > / ( D- !3 r M% .*@ <

?@*I ?'a% '; / 70 A'SI Y kL 2> / F%

!F@ KJ =% @ F' A' !J Z / A !S % C _% A' a% F% AD- ?@ A'SI Y =% @ / / .A N% 2; AD- 2SX P ] % =% @ / !F@ KJ =% @ F' A' !J Z

*: 62'; *: *#% ; ! D- A'SI Y 6*# F% 7% *- / Q

?@ 7$ A ?@

!; K'% ( D- ( D- 2SX P ] % G / 2

e@ / E A'SI Y 7> 7 ! ' .AJ < 6 X A'SI Y †2J ! ' %& 'k @2< 62'; / AD- , % B#@K< 7$ A X A 29>

V'M; =% @ . '< ( 2- =% @ / $ ' !

'k a% ' ( D- g$ 7V A'SI Y !F@ KJ ! ' %& kL F' 'k ( D- ?@ q'M; H$

! / ,- . ‚@ % 7 7>2 !9$ 2Z 7 .A 9 ) ( D- @ 70 "2Z AD- ƒ 2 62M%

HX; 2#) 7 7; % ?@

'R AX> $ SF

!; N% 2; r * , % P ] % G / 2

. 6 X HX; ( D- 2SX 7'I

REFERENCES

1. Al-Araby, A. A. (2004). Breeding studies on cucumber crop (Cucumis sativus L.). M.Sc. Thesis, Faculty of Agriculture, Tanta. University.

2. Al-Ballat, I. A. (2008). Breeding studies on summer squash crop (Cucurbita pepo L.). M.Sc. Thesis, Faculty of Agriculture, Tanta. University.

3. Amaefula, C., Agboand, C. U. & Nwofia, G. E. (2014). Hybrid vigour and genetic control of some quantitative traits of tomato (Solanum lycopersicum L.). Open Journal of Genetics, 4, 30-39.

4. Anant, S.O. (2018). Generation mean analysis in Bitter gourd (Momordica charantia L.). M.Sc.

Thesis, College of Agriculture, Latur, India.

5. Aruah, C., Uguru, M. & Oyiga, B. (2010). Variations among some Nigerian Cucurbita landraces.

African Journal of Plant Science, 4, 374-386.

6. Azizi, F., Rezaie, A. & Saeidi, G. (2006). Generation mean analysis to estimate genetic parameters for different traits in two crosses of corn inbred lines at three planting densities. Journal of Agricultural Science and Technology, 8, 153-169.

7. Bahlgerdi M., Aroiee H. & Azizi M. (2014). The study of plant density and planting methods on some growth characteristics, seed and oil yield of medicinal pumpkin (Cucurbita pepo var. styriaca, cv. ‘Kaki). American Journal of Life Sciences, 2(5), 319-324.

8. Bernardo, R. (2002). Breeding for Quantitative Traits in Plants. Stemma Press.

9. Buhler, D. D. (2009). 50th Anniversary-Invited Article: Challenges and opportunities for integrated weed management. Weed Science, 50 (3), 273-280.

10. Cushman, K. E., Horgan, T. E., Nagel, D. H. & Gerard, P. D. (2004). Plant population affects pumpkin yield components. Horticultural Technology, 1, 326-331.

11. Darrudi, R., Nazeri, V., Soltani, F., Shokrpour, M., & Ercolano, M.R. (2018). Evaluation of combining ability in Cucurbita pepo L. and Cucurbita moschata Duch. accessions for fruit and seed quantitative traits. Journal of Applied Research on. Medicinal and Aromatic Plants, 9, 70-77.

12. Davoodi, S., Olfati, J.A., HamidOghli, Y. & Sabouri, A. (2015). Evaluation of yield and quality of some hybrids between Squash (Cucurbita moschata Duch.) and Pumpkin (Cucurbita pepo L.). M.Sc.

Thesis. Faculty of Agricultural Sciences. University of Guilan. Rasht. Iran.

13. Doane, T.A., Horwath W.R., Mitchell J.P., Jackson J., Miyao G. & Brittan, K. (2009). Nitrogen supply from fertilizer and legume cover crop in the transition to no-tillage for irrigated row crops.

Nutrient Cyclingin Agroecosystems, 85, 253-262.

14. Elias, M. S., Hassan, K. D., Odeh, S. & Mohiaddin, S. R. (2020). Study of growth, yield and phytosterol of Squash (Cucurbita pepo L.) and medical Pumpkin (Cucurbita pepo L.) and their hybrid. Iraqi Journal of Agricultural Sciences, 51(2),675-684

15. El-Hamed, K. E. S. A. & Elwan, M. W. M. (2011). Dependence of pumpkin yield on plant density and variety. American Journal of Plant Sciences, 2(5), 636-643.

(11)

16. Fereshtian, M., Salehi, R., Kashi A. & Babalar M. (2020). Preliminary evaluation of compatibility, growth and yield of Khatooni melon’s scion on different cucurbit rootstocks in the field condition.

Iranian Journal of Horticultural Science, 52(2), 447-459. .(In Farsi).

17. Gonçalves, L. S., Rodrigues, A. R., dos Santos Bento, C., Robaina, R.R. & do Amaral Júnior, A. T., (2011). Herança de caracteres relacionados à produção de frutos em Capsicum baccatum var.

pendulum com base em análise dialélica de Hayman. Revista Ciência Agronômica, 42(3), 662-669.

18. Ghorbani, R., Khorramdel S., Asadi G.A & African R. (2017). Effect of non-chemical weed management strategies on population and diversity index for weeds in spinach. Journal of Agroecology, 9(3), 638-651. (In Farsi).

19. Hasandokht, M.R. (2012). Vegetable Production Technology (1th ed.). Selseleh press.

20. Hayman, B. I. (1958). The separation of epistasis from additive and dominance variation in generation Means. Heredity, 12(3), 371-390.

21. Hosseinzadeh Colagar, A. & Amjadi Souraki, O. (2012). Review of Pumpkin anticancer effects.

Quran and Medicine, 1(4), 93-104.

22. Javanmard, T., Soltani Saleh-abadi, F. & Bihamta, M. R. (2018). Estimation of some genetic parameters through generation mean analysis in Melon. Indian Journal of Agricultural Research, 52,619-624

23. Jinks, J.H. & Jones, R.M. (1958). Estimation of components of heterosis. Genetics, 43(2), 223-234.

24. Kang, M.S. (2003). Handbook of formulas and software for plant geneticists and tree breeders. Food Products Press.

25. Kaur, N. (2016). Genetic analysis of important economictraits and validation of molecular markers linked to Hull-less Seed traits in Pumpkin (Cucurbita pepo subsp. pepo var. styriaca). Ms.C. Thesis.

Punjab Agricultural University, Ludhiana.

26. Kearsey, M. J. & Pooni, H. S. (1996). The genetical analysis of quantitative traits. Chapman and Hull, London. UK. pp.380.

27. Kuabara, M.Y. (1984). Interspecific hybrids of cucurbita obtained by embryo culture. Escola Superior de Agriculture Luis Queiroz. Brazil. pp.69.

28. Kumar, R. & Wehner, T. C. (2013). Quantitative analysis of generations for inheritance of fruit yield in watermelon. Horticultural Science, 48(7), 844-847.

29. Latifi, M., Barimavandi, A., Sedaghathoor, S. & Lipayi, S.R. (2012). Sowing date and plant population effects on seed yield of Cucurbita pepo. International Journal of Agriculture and Biology, 14, 641-644.

30. Lόpez Anido, F., Cravero, V., Asperelli, P., Firpo, T., Garcia, S. M. & Cointry, E. (2004). Heterotic patterns in hybrids involving cultivar-groups of summer-squash, Cucurbita pepo L. Euphytica 135(3), 355-360.

31. Loy, J.B. (2004). Morpho-physiological aspects of productivity and quality in squash and pumpkins (Cucurbita spp.). Critical reviews in plant sciences, 23(4):337-363.

32. Madadkhah, E., Bolandnazar, S. & Oustan, S. (2017). Effect of salt stress on growth, antioxidant enzymes activity, lipid peroxidation and photosystem II efficiency in cucumber grafted on cucurbit rootstock. Iranian Journal of Horticultural Science, 49(2), 465-475. .(In Farsi).

33. Mather, K. & Jinks, J. L. (1982). Biometrical genetics (3th ed.). Champan and Hall.

34. Meybodi, S.A.M. (2007). Principles and basics of plant breeding (1th ed.). Isfahan University of Technology Publications.

35. Navjot, K. (2018). Genetic studies of yield and its component traits using generation mean analysis in summer squash (Cucurbita pepo subsp. pepo).Vegetable Science, 45(2), 154-160

36. Nesom, G.L. (2011). New state records for Citrullus, Cucumis, and Cucurbita (Cucurbitaceae) outside of cultivation in the USA. Phytoneuron, 1, 1-7.

37. Obiadalla-Ali, H. A. (2006). Heterosis and nature of gene action for earliness and yield components in summer squash (Cucurbita pepo L.). Assiut Journal of Agricultural Science, 37, 123-135.

38. Paris, H.S. (2002). Multiple allelism at a major locus affecting fruit coloration in Cucurbita pepo.

Euphytica, 125, 149-153.

39. Paris, H.S. & Kabelka, E. (2009). Gene list for Cucurbit a species. Cucurbit Genetics Cooperative Report, 31-32, 44-69.

40. Paris, H., Yonah, S., Portony, N., Mozes-Daube, V., Tzuri, N. & Katzir, G. (2003). Assessment of genetic relationships in (Cucurbita pepo L.) Cucurbitaceae using DNA markers. Theoretical and Applied Genetics, 106, 971-78.

41. Pandey, J. B. & Rao, T.V.R. (2010). Analysis of certain biochemical changes associated with growth and ripening of pumpkin fruit in relation to its seed development. Journal of Pure and Applied Science, 18, 34-39.

42. Peyvast, G.A. (2006). Olericulture (5th ed.). Daneshpazar press.

43. Ranjbar, G.A. (2012). Theoretical and Practical Plant Breeding (2nd ed). Mazandaran University Press.

(12)

44. Rassam, G., Naddaf, M. & Sefidcon, F. (2007). Effect of planting date and plant density on yield and seed yield components of anise (Pimpinella anisum L.). Pajouhesh & Sazandegi, 75, 127-133.(In Farsi).

45. Rebolloza-Hernández, H., Castillo-Gutiérrez, A. & Carapia-Ruíz, V.E. (2016). Estimation of genetic parameters and selection of S1 lines in a segregating population of tropical maize. Revista Mexicana de Ciencias Agrícolas, 7(8), 1893-1904.

46. Saad, M. S. (2003). Inheritance of some economical traits in Squash (Cucurbita pepo L.). Ms.C.

Thesis, Faculty of Agricultural Mansoura University, Egypt.

47. Savage, J.A., Haines, D.F. & Holbrook, N.M. (2015). The making of giant pumpkins: how selective breeding changed the phloem of Cucurbita maxima from source to sink. Plant, Cell & Environment, 38 (8), 1543-1554.

48. Swanton, C. J. & Weise, S. F. (1991). Integrated weed management: the rationale and approach.

Weed Technology, 5(3), 657-663.

49. UPOV. (2016). Descriptors for Cucurbits guidelines for the conduct of tests for distictness, uniformity and stability Pumpkin (Cucurbita pepo L.). International union for the protection of new varieties of plants, 29 pp.

50. Villanueva-Verduzco, C., Ayala-Esteban, J. A., Villanueva-Sánchez, E., Sahagen-Castellanos, J., Sánchez Cabrera, I., Chaning Merrick, L. & Guadalupe Irizar Garzas, M. B. (2020). Changes of genetic variances and heritability by effect of selection in a Mexican local variety of Squash. Journal of Agriculture and Horticulture Research, 7(5), 225-230.

51. Walker, R. H. & Buchanan, G. A. (1982). Crop manipulation in integrated weed management systems. Weed Science, 30(1), 17-24.

52. Wu, T., Zhou, J., Zhang, Y. & Cao, J. (2007). Characterization and inheritance of a bush-type in tropical pumpkin (Cucurbita moschata Duch.). Scientia Horticulture, 114, 1-4.

53. Zraidi, A., Pachner, M., Lelley, T. & Obermayer, R. (2003). On the genetics and histology of the Hull-less character of styrian Oil-pumpkin (Cucurbita pepo L.). Cucurbit Genetics Cooperative Report, 26, 57-61.

54. Zraidi, A., Stift, G., Pachner, M., Shojaeiyan, A., Gong, L. & Lelley, T. (2007). A consensus map for Cucurbita pepo L. Molecular Breeding, 20(4), 375-388.

Referensi

Dokumen terkait

Despite the trend of realized genetic gain observed in this study varied dependent on the traits: slightly decreased for growth and increased for stem straightness,

Genetic correlations of somatic cell count and conformation traits with herd life in dairy breeds, with an application to.. national genetic evaluations for herd life in the

The use of same traits used in this study, unfavourable genetic a linear model for these binary traits may be correlations between leg score and length score of criticized because

159 Chapter 7 Estimation of additive and non-additive genetic variation for traits associated with vegetative persistence and herbage yield 7.1 Introduction The estimation of

Phone: + 0260 520500 E-mail: [email protected] THE DYNAMICS OF GENETIC VARIABILITY IN THREE GENERATIONS OF MASS SELECTION FOR FAST GROWTH IN AFRICAN CATFISH, Clarias gariepinus

In this research, the interactions of gas exchange and photosynthetic parameters were investigated with leaf nutrients contents of olive trees cv.. ‘Arbequina’ in super high density

They comprise definition of background and aims, definition of traits to be considered, a list of estimates of genetic parameters for these traits, the appropriate method of improvement

Despite the trend of realized genetic gain observed in this study varied dependent on the traits: slightly decreased for growth and increased for stem straightness, outstanding