• Tidak ada hasil yang ditemukan

ناریا ینابغاب مولع

N/A
N/A
Protected

Academic year: 2024

Membagikan "ناریا ینابغاب مولع"

Copied!
10
0
0

Teks penuh

(1)

* Corresponding author E-mail:[email protected]

:

) Plantago ovata (

!"#$%

1

(*

" ) "*%

2

1 .

2 .

! " #

$ ) : '

14 / 1 / 1400 -

$ :, -!

11 / 7 / 1400 (

" ,-

0 1 2"

3#

456 7#

8 5 9 7: 5 16

<

=:

>? @ A B C D#

E6 7' F # 3 #

= : 22

=H 9 7: 5 I . 3 J 3 K 3 #

= : :

L ' EH ' 0 #

<

# M# 6 3DH '

7: D@

N # L

# 3 , O : Ward .

3 J 7D6 P 3#

, Q R L

. '

0 6

S T# 6

<

#

76 R S =H J # 26 H

UV : 6 75T6 . # W 3 J 3 K

<

3:

3 K 5#

. "H W

3 J 3 K #

= : 3 J

M#

X 9 .

3 J 7D6 P W5!

E6 P Y 9 : 3

8 R 6 77 / 86 H Q

0 # S =H 3 I

. R

0 R 6 S =H [ - 3 I Q S =H 8 = 3 #

\ B L E 0 ]N

\ B 3D^5:

XK

#

3 J

# 3 E6 P

\ @ . 5 ' 8 5 9 7: 5 0 #

<

6

= : # # S =H 75T6 #

<

PO12 PO15 #PO6 3I 3#

_: 6 DRP 3 26 UV : 6 ^`

3#

3 2#

<

#

. #

. ( : " 0

3 J M#

X 9 # a M# 6 3DH ' 7: D@

.UV : 6

Evaluation of morphological diversity of some Plantago ovata ecotypes

Mohammad Hossein Fotokian1* and Mahdieh Arshadi Bidgoli2 1. Associate Professor, Shahed University, Faculty of Agriculture, Tehran, Iran 2. Ph.D. Candidate, College of Abouraihan, University of Tehran, Tehran, Iran

(Received: Apr. 03, 2021- Accepted: Oct. 03, 2021 )

ABSTRACT

This study was performed to evaluate the morphological diversity in 16 Plantago ovata ecotypes in a randomized complete block design with three replications using 22 morphological traits. In cluster analysis using standardized data, the distances between the ecotypes were estimated with the square Euclidean distance method and the dendrogram was plotted by Ward’s method. Factor analysis was performed by Verimax method. The mean squares of ecotypes were significant for all traits, except the amount and percentage of mucilage. The results of cluster analysis grouped the ecotypes into three clusters. The accuracy of the results of clustering was confirmed by discriminant function analysis. In factor analysis, five factors were extracted that explained 86.77% of the variance among traits.

The most important effective traits in determining the variance were plant height, inflorescence tail length, spike length, harvest index and 1000-seed weight, which were in the first factor. Morphological diversity among the ecotypes was significant for most traits and PO12, PO15, and PO6 ecotypes were superior to the other ecotypes in terms of mean grain yield and mucilage content.

Keywords: Discriminant function analysis, eigenvalues, square Euclidean distance, mucilage.

(2)

)%"1%

/",0*

)

Plantago ovata

(

$. 1 (*

$#

$023

45 67#

"

/, ' 8&.

(Plantaginaceae)

4

$9

&.

,#

,:#

. ; 4< 9 +

$9

)

Donald, 1963

.(

>#

/ 1 4

?

$@ A?

"

B#,?

C , D7'

$9 E"

. C F 4 (

( 0 G 2*

. H @5 / &.

) IJ * 9 ( K 9

4#L .

$MN*

(* O

C )

Ebrahimzadeh et al., 1997; Najafi &

Rezvani Moghaddam, 2001; Phan et al., 2020

( 4

P 25 Q ,72 3 4<

R 7;'

$9 .

)

McCredie & Whistler, 1965

(

$: 6 .

$1S#

. E"

IJ * 9

&< 9

$1 && # O

6< T* *

$1 &&

65 9

$1 &&

)

Mir

Masoumi, 1992

( U3 . , / , 61 /",0*

V# &Q

$#

$# CW

$;# F (@&Q

(0<

/ (*

)

Simpson & Conner- ogorzaly, 1986; Gupta et al.,

.(2018

4<

.

$@A?

,*

X F Y) /

9 H 5 ZLJ +

,0Q

$ <

"

X <

.

$ 1

09 (*

) Basudehradun et al., 1989

.(

O

4 * O

>#

/ 1 [?

$ &*

4

&3

\#

> 29

(Mirjalili, 2008)

,

#"

.

4K ' 4 K 9 IJ * 4<

/",0]*

"

F

. 4!,]* ^ H 5 ]^

_ 3 ]^

$ ]* O R 69

)

$' `' (X 2 6O a,M9

$& # / 0 *

$9

(Sing et al., 2003)

.

> &b .

>#

/ 1 (c 0P a + d P Y O

$. 1 ( AD'

V^

V' ,9 e <

ef P ( . (*

)

Chadho & Rajender, 1995

.(

G * . , + 4

R 5

>#e:# K 4< 1

.

$3 "

gJQ /

,72 3 E"

h i L

6

"

4< 1 .

X i

$9

$2M9

$#

4

$ 9 ,!

/ ,T*

/

"

j 6 * .

$3 "

,#

kCP /

<

)

Kouchaki et al., 2004

.(

># , &

$* , ( @^

5 ' . 1

$#

,N@9 Yl<

>#

. 1

`#

% &' X

X m<

.

$3 "

,#

6 9

( .

$9 . ' 4

" ,9 l lM' Z 6

$

( K 4@5 N9

% &'

$7 <I X I j*JO / 1 /",0*

$< ,#

X `<

/ (*

"

`<F 4 (+ &

% &'

$7 <I 4lA?

&

,# +n

$o ' ,9

&

,

$P ,?

B! 9 49 <, . 4 S<

/

*F

<

(#,# 9 p0P

:<

43 `9 .

$7 <I Yl<

4

$# e*

)

Shahsavaran, 2001

(

X `<

> &q

$;. SO Z ,^

O

$9

&

.

> 5

@9 , H ) <

[* &9

"

\#

X I j*JO

Z 0Q H 2N9 ()#

$* &

$3 "

(*

)

Acquaah, 2007

.(

4 ,1 S<

L @9

"

$1S#

.

()#

$* &

, r Q ' 4lA?

&

4 5

X I j*JO *

H ) <

V &9

$7 <I E"

, 49 <, .

$PJQ +

/ 0 *

$9

&&

)

Krichen et al., 2012

.(

Z 0' . + * / 1

$* ,

% &' ()#

$* &

6 ef P ( .

& 6.

$! . 4 49 <, .

$PJQ G A<

$9

4&

" * A

( @^

Z 0Q ()#

$* &

(*

. * 4@* '

\#

49 <,

$PJQ ,o 9

a

% &'

$7 <I s

$7 <I

>

V &9 r2 )9

/ 1 ,^

(*

)

Acquaah, 2007

.(

$!,@9 X i

# K 4

&#F,!

$<L ? / b O

" <

4

? 4 R 6< O X i

9 ,m<

"

Z K r2 )9

$ 6#

$# * &

tT*

H ) <

Z Q , 1 .

K

% &'

$7 <I ( K H ) <

># 5 49 <,

.

$PJQ ( .

#"

.(*

Z Q h+

()#

$* &

\#I 5 &!

3 "

$

$0 [2W ,

$# * &

4 5 X I j*JO . 1

$#

/ 0 *

$9 4

&3 Z 3J?

4# O , 4 ,1 S<

,9

$* ,

% &'

$7 <I ( .

/S#

(*

)

Krichen et al., 2012

.(

E .

$02 )9 ,

F,

% &'

$7 <I K

4

>#, 9

<F E . 9F /, u 9 &q

$9 4

N 9e .

"

Z 3J?

># &q (0Q

4 2 ,!

/ 0 *

$9

&# <

N

$@ * 4#e`'

R 2M'

% &'

$7 <I , 4# O / . ()#

$* &

$#

$5 75 9 ,

. <

"

>

E .

9F /, u 9 &q E

. 4#e`' 4 + 4#e`'

$29 3 v#,;'

% &'

$7 <I ,

6

. <

4& 9"

/ 0 *

"

>#

E .

$ #"

(3)

X I j*JO . 1

$#

r2 )9

"

R Ai M#

)

Moghaddam, 2011; Moghaddam et al., 2013

(

, 6<

$.

)

Saeedi AbuIshaqi, 2008

(

>;# F

$< 9, )

Makizadeh Tafti et al., 2010

( e &;1

)

2014) ., et al Safaeian,

; 2007 Rahimi,

( / * 4<

)

Salamati & Zeinali, 2012

( /, W E e1 .

$02 )9 K

.

/" ,9

$. 1F

"

% &'

$7 <I (#,# 9

V &9

$7 <I 4

&3 eK j 9 ,O /I . 4 S<

$l2'

$9 )

Gharayazi, 1996; Mohammadi et al.,

2003; Singh, 2003

.(

>#

m&9 49 <,

.

4 S<

# e 9

% &'

$7 <I , (0Q #

Z 0Q 9 gJQ #

>

X i

$9 9

$* , ,i , 1 )

Warburton & Hoisington, 2001;

Zhang et al., 2006

( 9 4< 0*w 9 jW, 23

( .

h i

#"

. 1

$#

K

% &'

$7 <I R i

4K ' , ,D Z 0Q j 9 V &9

$7 <I . 1

$#

/, ,

$!

"

>#

X I j*JO

& "

Z Q 4 !,:<

(*

.

>#

B lM' 4 m&9

$ #"

> @'

% &'

$7 <I K 9 - ' <I

. /",0*

"

,m<

$+, Z Q h+

$

$0 X `<

.

2 %

( 3(

!

"

# $%

/ e<

- ' . /",0*

4

"

\<

I / 7;<

" ; / :;<

. G K) 1 ( 4 ' /

3 e9 4

$' l lM'

>#

/ 7;<

Z h);9 G ?

$# ! ,uK 48

4K 53 4l i _,3

$# ! ,uK

31 4K 36 4l i

% 0' 1050 , 9

"

vN*

# [5 i g,?

a 2 . R9

$! h' 4*

,7' 9 4@5 N9 ,i .(!,1 a + 43 e9

"

% <

$9 5

$&

(# .

$7#, 75 4

/ 7

$*

t& #"

,

, 9 , , pH

8 / 7 . (;

C . 4 Z Q *

$

R+

Z,

$# . R9 r#

q , 9 42Q !

r#

50

$ < * , 9 RM9 H W 4.

X

># ,!

/ 9

`<

X . e 9 j ,' 4' P H 2N9

42Q !) 4'

,.

r#

P 5

$ < * (, 9 j m&'

/" A9 r23 .

",.

4K ' 4

" <

RP ,9 r2 )9

4 Z Q

$ * X `<

.(!,1

&' # $% ()*+

( 6i " 4 P ,o kCP . 1 R9 " @ 4* Z, ,. $< 9 4'

4

?

$! h' F, ( K

d eK G ?) ,72 3 42A&*

@' 42A&*

@'

42A&*

<

@' R 42A&*

@' 4<

(42A&*

% 0' 4' G ? X R1

>#nF G ? z,

@' z,

@' . < H ) <

."

"

9"

( 42P,9 '

eA*

c 42A&*

50 42A&* Q $. 21 $.

50 Q 4' 4 . 4 [ ','

" &3 '

eA*

"

' 42A&* c ' "

50 42A&* Q

" $.

'

$. 21

@' ."

"

9"

( ' 42P,9 ( ,

4

&3

$1 * R9

@ . > @'

"

$1 *

R9 , /" <

,72 3 , 1

" 4<

1000 4<

,72 3 $ 6#"

{+

$9 ' ( , r#

.

(;

/ ( , . <

$ ' # $% ()*+

"

$# `<F 4 ( . . C /",0*

$ <

"

(

( 0 IJ * 9 K 9

4#L .

$MN*

(* O

4<

.(*

G K

1 .

$9 *

;&9 - ' . /",0*

9 4@5 N9 .

Table 1. Names and origins of studied plantago ovata ecotypes.

Origins Code

Number Origins

Code Number

Herat-Afghanistan PO9

9 Damavand

PO1 1

Khansar PO10

10 North Khorasan PO2

2

South Khorasan PO11

11 Razavi Khorasan PO3

3

Razavi Khorasan PO12

12 Abadeh

PO4 4

Tehran PO13

13 Unknown

PO5 5

Razavi Khorasan PO14

14 Qom

PO6 6

Isfahan PO15

15 Yazd

PO7 7

Kashan PO16

16 Shiraz

PO8 8

(4)

C5 ,

$ #"

IJ * 9 /",0*

{+

.

$0 R9 ! X ' e 9 X ' ,.

X,1

IJ * 9 e 9

Q IJ * 9 9

$* , ,i

& !,1 . Y`&*

e 9 Q

IJ * 9 4

E

Sharma & Koul

) (1986 Ebrahimzadeh et al.

) ( 1997

X `<

.(!,1 l9 X ' , ,.

X,1 IJ * 9

4 Z Q j 6l' e 9 ! X ' , l9 IJ * 9

[6P, Q

> @'

# ,1 4

>#

!

$9

< ' 4

&3 {+

( 0 IJ * 9 C

/",0*

9

/ 0 * ,i . , 1

, -.

" /

tO

"

4#e`' t< #

/ 0 *

"

/ . RQ P

"

4< <

, 1

$' 0Q 4 4` <

9"F - ' <I F

.

<F

$&@9

# ,1 9"F

$ ' 9 46# l9

> :< 9 ,i

. & !,1

$' 0Q 4

<F N+

$;# 9"F

$&@9 9"F

, 9 O <

G 7* ,

t 5 e <

Z 0'

>

- ' <I .

$* , .

,

a s

>

Z 0Q Y.

@ / . ' 4#e`

29 3

$ / 0 *

"

E t #

(Varimax)

X `<

(!,1 )

Johnson & Wichern,1988

.(

R9 3

$# . 4 l9

, /S#

Y

"

\#

9

/, , ,i . & !,1 4

m&9 / ,1

&

- ' . 4#e`' 4 + /

.

< *

R# A') 4 (Z

<

tT*

RQ !

>

- ' .

@9 V ,9 42Q !

$* 2i F,

X ,1 <

4

E j *,'Ward

. # ,1 (MQ

|# <

4#e`' 4 + -

4#e`' V ' { );'

$* ,

. 4#e`' .

9F X,<

e!

4)6<SPSS

26 X `<

(!,1 .

4 5

( 6$

0).

1

Z 0'

>

- ' . /",0*

, 4 . Z 0Q 9

4@5 N9 4 eK l9 Q

IJ * 9

$&@9

) G K 2 ( 4

;<

/ &.

K

% &'

$7 <I L

>

- ' . (*

. 4K ' 4 47&#

j23 4 S<

$. 1 Y&#e1 - ' <I . H 2N9 , 4# O K

% &'

$7 <I

>

,!

# V9 K

$9

># , &

> &q

VA&9

$7 <I

$. 1 , /",0*

$9

< ' 4

&3

4< e+

$&W ,*

"

I . H 2N9 H 6M9

[K 9 Y# e!

$#

Y&#e1 )

Diepenbrock,

2000; Moradi et al., 2010

.(

G K

2 . |# <

4#e`' t< # Z 0Q - '

. /",0*

9 4@5 N9 .

Table 2. Results of variance analysis of traits in the studied plantago ovata ecotypes.

Coefficient of variation Kruskal-Wallis H (%)

Mean of squares

Traits Block Ecotype Error Sampling Error

4.757 -

1.715 1.941ns

127.511**

3.882ns Days to germination

2.527 41.4**

0.896 1.726**

472.131**

3.111ns Days to spikeing

2.541 38.22**

0.771 2.023**

56.737**

10.549* Day to 50% spike

3.507 38.43**

1.438 4.480**

84.724**

1.694ns Days to flowering

1.134 38.5**

0.708 1.338*

144.329**

4.938* Days to maturity

15.170 33.3**

3.361 6.575**

33.787**

4.460ns Plant height

16.527 32.9**

2.990 6.013**

28.324**

4.090ns Inflorescence tail length

24.209 22.56ns

0.130 0.251**

0.576* 0.064ns

Spike length

23.064 -

2.757 1.646ns

3.785* 8.313ns

Number of fertile spikes

66.467 23.5ns

1.931 2.209ns

5.346* 2.090ns

Number of infertile spikes

26.506 -

5.222 3.700ns

12.425**

2.382ns Total number of spikes

24.310 30.55*

55.993 113.2**

379.126**

3.382ns Number of grains per spike

22.913 -

4.405 6.38ns

25.767**

5.444ns Leaf length

11.827 -

5.694 5.15ns

15.774**

14.083ns Number of leaves

24.771 -

0.015 0.011ns

0.061**

0.027ns Grain Yield

32.676 -

0.113 0.113ns

0.528**

0.207ns Biological Yield

16.758 -

50.913 51.38ns

186.802**

32.474ns Harvest index

3.6779 43.21**

0.001 0.005**

0.154**

0.009ns 1000-seed weight

17.273 32.25**

0.019 3.494**

21.904**

1.822ns Inflation factor

29.784 26.34*

0.124 331.58*

870.360* 478.53ns

Inflation rate

63.638 23.82ns

0.010 146.7**

103.334ns 121.930ns

Mucilage (%)

64.341 23.82ns

0.00009 0.015**

0.010ns 0.012ns

The amount of mucilage

- 96

30 15

2 Degree of freedom

ns, *, **

: 4 [ ',' Z 0'

$&@9 vN*

G P 1 5 Q

$&@9 Z 0' A<

.

**, *, ns: Significantly difference at 1% and 5% probability level and no significantly difference, respectively.

(5)

@' , 4<

42A&*

Q e 9 IJ * 9

4 $5 #" $;# 9"F N+ e 9 47&# jW, 23 > #" $2 + Z 0' R 5 - '

4#e`' 4` < .

$&@9 t< # $;# 9"F N+ . # ,1

13

$&@9 (0Q 9"F Z 0Q ># , 4

,i / 0 * 9 e < t 5 G 7* , , 9 O <

G K) (!,1 2

' 0Q .(

< 42A&* @' &< 9 $

#" Z , u' [#,^ 47&# jW, 23 $ 6#" ,72 3

$&@9 $;# 9"F N+ l9 $5 ;<

> :< 9 IJ * 9 l9 Q 9 47 5 P

$&@9 $;# 9"F N+ Z @ ,9 $&@9 .

[#,^ j $5 $;# 9"F N+ Z @ ,9 > :< 9 u' 4 9F @9 ># R l' % ^ 9 <F Z , l9 <F 4 $' 0Q j# m < . ; $9 Y5 q

$&@9 $;# 9"F N+ Z @ ,9 > :< 9 (*

$+, % ^ 9 ># & #" Z , u' [#,^

42A&* 4< @' 4< e. " &< 9 Z 0Q /, W X ' ! . 4K ' R i 42Q ! 9 m <

2 3 4 5

|# <

46# l9

> :< 9 - '

. 9"F

$ ' G K

3 4#

/ .(*

- ' .

PO7

4 PO5

[ ','

>#, ;

>#, e 9

@'

"

' eA*

4

+ h + . <

"

$# `<F 4 Z 0Q

\#I 5 &!

(M' , o ' R9 3 s M9

\ <I

& 6.

C5 ,

$ * 4 ,72 3 R i G Ai X"L (*

"

I 5 &!

/ 1 Z 3J?

$l i }, *

)

Safaei & Zinley,

(2007

,#"

9"

% i ,.

\#

"

RP ,9 <

&.

$ +

> 9w' s# , H 2N9 4&7 9 ,

$;#

$;# "

/ 1

$3 "

$9 4

,

/ <"

4 S<

(#,# 9

$3 "

4

\ F

$9 ' Z , u'

$2h!

()#

$* &

. 1

$* , <

)

Tabrizi et al., 2004

.(

>#,

@'

42A&*

<

- ' / . ;9PO1

.

@' 42A&*

/ 1

$7#

"

eK ,72 3 (*

4

> @' / &&

R 6< O ,72 3 / 1

$9 ,#"

42A&*

. / <, 1,

@' 4<

. /

"

$!,?

> 9w' / &&

9 e &* !

9

" <

4<

.

& 6.

)

Tabrizi et al., 2004

.(

Z l lM'

Vahhabi et al.

)

(2008

>#, ;

@' 42A&*

4' / 1 /",0*

/ ' / l<

) 4 / 10 ( 4 (*

. 9F

4&9 Z , u'

@' 4<

42A&*

"

55 / 32 - '

'PO2

33 / 53 - '

, u 9PO11

.

@' 4<

42A&*

(l lP e)9 / 1

> @'

$9

&

,.

4q

@' 4<

, ; / 1

e)9 , 1 e

, (! # 9 e &* ! 5 '

/ (*

Y# e!

>#

(0Q ,`&9 4 Y# e!

,72 3 . + )

Tabrizi

et al., 2004

.(

>#, ; e 9 ,72 3 4<

531 / 0 X,1

B2@ 9 4 - '

>#, PO12

F 264 / 0 - '

F, PO1

. # ,1 e 9 Z , u' ,72 3

$ 6#"

e <

"

514 / 0 ) (PO1

' 510 / 1 ) (PO4

, u 9 .

>#, ;

"

e.

4<

- ' / . ;9 PO16

) 19 / 2

(X,1 4 4 l - ' . Z 0'

$&@9 .(

G K

3 . 46# l9

> :< 9

$+, Z 0Q 16 - ' /",0*

.

Table 3. Mean comparison of some traits in 16 Plantago ovata ecotypes Ecotypes Days to germination

(day)

Number of infertile spikes

Number of grains per spike

Number of leaves

Grain yield (g)

Biological yield (g)

1000-seed weight (g)

PO1 28.77e 1.16b 41.22abcd 17.44bc 0.26c 0.51d 1.96def

PO2 24.33f 3.05ab 32.55d 18.11bc 0.30bc 0.83bcd 1.92fg

PO3 23.66f 3.16ab 50.44ab 21.22ab 0.46ab 1.27ab 1.75i

PO4 32bc 3.16ab 45.66abc 20.33abc 0.46ab 1.11abc 1.74i

PO5 22.88f 3.72a 45.33abc 22.33a 0.48ab 1.51a 1.96ef

PO6 23.77f 2.27ab 41.88abcd 19abc 0.47ab 1.13abc 1.78hi

PO7 35.33a 2.83ab 35.44cd 18.88abc 0.35abc 0.82bcd 1.73i

PO8 29.66de 1.27b 46.11abc 19abc 0.51a 1.02abc 1.9g

PO9 28.77e 2.16ab 52.66a 19.22abc 0.47ab 1.15abc 1.91g

PO10 31.66bcd 2.5ab 39.78bcd 18bc 0.39abc 0.88bcd 2.08b

PO11 32.11bc 1.72ab 53.33a 19.22abc 0.4abc 1.04abcd 1.81h

PO12 31.55bcd 2.16ab 47.88ab 19.22abc 0.53a 1.19abc 2.02c

PO13 30.66cde 1.72ab 38.33bcd 19.22abc 0.37abc 0.96abcd 1.92fg

PO14 33b 1.83ab 44.77abcd 19.77abc 0.43abc 0.94bcd 2cde

PO15 28.66e 1.61ab 50.66ab 19abc 0.5a 1.15abc 2.01cd

PO16 31.66bcd 1.38b 34.33cd 17c 0.34abc 0.71cd 2.19a

* ,.

> :< 9 . G P vN* < a, ;9 k ,P 4 5

Q Z 0'

$&@9

< <

.

Means in each each column followed by the same letters are not significantly difference at 5% probability level.

(6)

0).

4#e`'

$29 3

@' 5 R9 3

• ,) *

<

4

% `9 tO

"

R9 3 . Y+,q t #

767 / 86 Q

"

% &' K 9

>

Z 0Q 4 K '

< <

G K) 4 .(

R9 3 G Z 0Q

% 0' 4' G ? X R1

>#nF

G ? 42A&*

{+

( ,

"

4< e.

>#, ;

$29 3

<

4

$9 '

>#

R9 3 4 X <

R9 3 (9 i / 1 9 <

4 Y# e!

F [A*

/e < 79 ,

( ,

$9 . ,1 R9 3 X 4 4 X <

R9 3 Z 0Q

$7#I 5 &!

C:9 <

$9 ,1

>#, ; ( .

Z 0Q

"

' c 42A&*

"

' 50 Q 42A&*

.

$

"

'

$. 21

"

'

*

<

H ) <

- ' .

, } *

>#

R9 3

$9

< ' ,`&9 4 H ) <

- '

9"

* [* &9 / 1

. R9 3 X * 4

$' 0Q

&< 9

@' 42A&*

@' R 42A&*

@'

4<

42A&*

@' z, ,72 3 4<

4' ,72 3

$ 6#"

4'

>#,'L [# ,^

$29 3

<

4

&3 R9 3 ,72 3 4 + &

4 H ) <

, } *

>#

R9 3 U3 / #e1, - '

.

$#

,72 3

, ; . + .

Z 0Q

$0 ! X ' e 9 X '

,.

X,1 IJ * 9 e 9

Q IJ * 9

>#, ; [# ,^

R9 3 X q

;<

<

4

> . R 5

>#

R9 3 4 X <

IJ * 9 C:9 <

4

$9

< ' 4

&3

\#

@9 j 9 Y&#e1 ( 0

- ' . ,o 9 .

R9 3 j`&O e <

4 X <

42A&*

<

4 + &

4

Y.

F U3 Y# e!

@' 42A&*

@' 4<

42A&*

(# <

,`&9 4 Y# e!

,72 3 . + .

Y+,q t #

U3 4

V#" ' t< #

>

R9 3 . G @ 9 ,'

> 3 G P l9 R

t< # 4 K ' /

>

|&O R9 3 , u'

`#

. ;<

( @i 9 - '

. /",0*

9 4@5 N9

"

,m<

R9 3

G 4

@ K 098 / 44 Q

"

t< # tO

"

Y+,q t #

4 K '

< <

R7 1 4#

/

.(*

- ' .

PO7

" PO4

,m<

,.

R9 3 G

$29 3 (AD9 . & 6.

6 0).

"

4 + 4#e`' / " / 0 *

.

- ' / < * j 6l' / ,1 # 4 + 4* .

R7 ) < &

2 > G 4 + .(

6 - '

)

PO1 PO2 PO10 PO13 PO14

,m< " (PO16

,:# 7# 4< e. " (0Q (. A

&

G K) 5 .(

R7 1 Y# < . - '

.

$29 3 4#e`' G R9 3 ,m< " 4@5 N9 9 /",0*

.

Figure 1. Demonstration the studied plantago ovata ecotypes for the first two factors of factor analysis.

(7)

G K 4 . 4#e`' 4 R9 3 . , Z 0Q 9

$* , - '

. /",0*

.

Table 4. Factor analysis for the studied traits in plantago ovata ecotypes.

Component Traits

5 4

3 2

1

-0.648 -0.007

-0.054 0.44

-0.449 Days to germination

0.065 -0.088

-0.172 0.936

0.039 Days to spikeing

-0.046 0.023

0.159 0.929

0.168 Day to 50% spike

-0.026 -0.079

0.061 0.959

0.105 Days to flowering

0.059 -0.007

-0.075 0.984

0.068 Days to maturity

0.100 0.155

0.359 0.301

0.820 Plant height

0.078 0.188

0.350 0.362

0.776 Inflorescence tail length

0.249 -0.143

0.239 -0.027

0.831 Spike length

0.162 0.141

0.920 -0.089

0.087 Number of fertile spikes

0.755 -0.146

0.313 0.347

0.320 Number of infertile spikes

0.559 -0.012

0.723 0.196

0.263 Total number of spikes

-0.447 -0.073

0.624 -0.204

0.479 Number of grains per spike

-0.039 0.231

0.343 0.023

0.822 Leaf length

0.279 -0.110

0.610 0.091

0.597 Number of leaves

-0.118 0.286

0.873 0.013

0.240 Grain yield

0.167 0.152

0.789 -0.048

0.515 Biological yield

-0.523 0.051

-0.144 0.176

-0.689 Harvest index

-0.091 -0.003

0.067 -0.487

-0.720 1000-seed weight

-0.411 0.675

0.229 0.010

0.037 Inflation factor

-0.204 0.632

-0.115 0.203

0.342 Inflation rate

0.103 0.931

0.137 -0.139

-0.034 Mucilage (%)

0.103 0.931

0.137 -0.139

-0.034 The amount of mucilage

Before varimax rotation

1.468 1.717

3.056 4.614

8.235 Eigenvalues

6.672 7.804

13.889 20.972

37.430 Variance (%)

86.767 80.095

72.292 58.402

37.430 Cumulative variance (%)

After varimax rotation

2.251 2.903

4.233 4.613

5.089 Eigenvalues

10.23 13.197

19.243 20966

23.132 Variance (%)

86.767 76.538

63.34 44.098

23.132 Cumulative variance (%)

G K 5 @9 / A > :< 9 .

( ̅ ± ̅)

/ ,1 Z 0Q t< # 4#e`' 4 + 4#e`' .

- ' ./",0* .

Table 5. Mean, standard error ( ̅ ± ̅) and variance analysis of traits in the groups obtained from cluster analysisin plantago ovata ecotypes.

Wilks' lambda Total

Clusters Traits

3 2

1

.702 29.285±3.76

33.666±2.35 27.639±3.68

30.018±3.11 Days to germination

.325**

51.986±7.24 67.111±14.92

50.486±1.17 48.944±2.16

Days to spikeing

.103**

55.965±2.51 61.555±0.47

56.014±1.01 54.037±0.69

Day to 50% spike

.197**

60.347±3.06 67.111±2.35

60.069±1.34 58.463±1.38

Days to flowering

.134**

102.021±4.01 111.444±5.02

101.208±0.76 99.963±0.75

Days to maturity

.445**

16.903±1.93 18.222±0.47

17.924±1.57 15.102±1.22

Plant height(cm)

.442**

14.837±1.77 16.250±0.19

15.715±1.45 13.194±1.09

Inflorescence tail length

.686 2.069±0.25

2.083±0.11 2.194±0.21

1.898±0.25 Spike length(cm)

.597* 5.562±0.64

5.277±0.7 5.958±0.38

5.129±0.66 Number of fertile spikes

.811 1.736±0.77

2.500±0.23 1.764±0.81

1.444±0.7 Number of infertile spikes

.747 7.257±1.17

7.777±0.94 7.680±1.1

6.518±1.1 Total number of spike

.415**

43.777±6.49 40.555±7.22

48.542±3.94 38.500±4.49

Number of grains per spike

.33**

11.024±1.69 10.833±0.54

12.292±1.27 9.398±0.69

Leaf length(cm)

.684 19.187±1.32

19.611±1.02 19.777±1.27

18.259±1.05 Number of leaves

.401**

0.423±0.08 0.412±0.07

0.482±0.03 0.349±0.06

Grain yield(g)

.364**

1.029±0.24 0.965±0.2

1.209±0.13 0.809±0.16

Biological yield(g)

.806 42.772±4.55

44.955±0.81 40.834±4.25

44.629±4.96 Harvest index

.521* 1.922±0.13

1.741±0.01 1.898±0.1

2.016±0.1 1000-seed weight(g)

.946 10.821±1.56

10.417±0.47 11.171±1.66

10.491±1.72 Inflation factor

.918 61.139±9.83

61.775±6.19 63.556±12.49

57.703±6.33 Inflation rate

.895 19.035±3.38

17.287±0.91 20.053±4.14

18.260±2.56 Mucilage (%)

895 0.190±0.03

0.172±0.01 0.200±0.04

0.183±0.02 The amount of mucilage

- -

4,7 3,5,6,8,9,11,12,15

1,2,10,13,14,16 Genotypes number

:** * 4 ',' [ Z 0'

&@9

$ vN*

G P 5 1 . Q

*, **: Significantly difference at the 5% and 1% of probability level, respectively.

(8)

R7 2 . X ,1 <

RQ P

"

4#e`' 4 + - ' . 4@5 N9 9 /",0*

.

Figure 2. Dendrogram resulting from cluster analysis in the studied plantago ovata ecotypes.

R9 X 4 + - '

.

PO3 PO5 PO6

PO8 PO9 PO11 PO12

• M5 " 4 PO15

$ j 9 Z 0Q G ?) $0

@' 42A&*

42A&*

@' 4<

G ? 42A&*

@' z, z,

,72 3 4<

,72 3 4' ! $ 6#"

Q

Q e 9 X ' 4 $A6< ,', (IJ * 9

4 + ,# *

$9 C5 (* / . Y&#e1 '

># , , ; - '

. Ri P . X `<

> Z 0' ,D P - '

. > [ ',' 4

PO12

$* 2i 42Q ! V ,9 ) X 4 + " PO15

87 / 8 (

>

G 4 + " PO1

) X 4 + " PO5

$* 2i 42Q ! V ,9 03

/ 128 . F, (

4 $# `<F "

- ' . " \# ,. K 9

4 +

i .

4 (A6< , ; $7 <I ( ,

- ' . K 9 4 +

& 6. ,:# .

4 " < Z Q ># , &

z

$9 , 1 4K ' '

4 - ' . K 9 / ,1

. , r2 )9

/, / # O " , ;

$# . t#" , . b .

, / 0 * " ` 9 \ 70' .

4#e`' |# < (MQ

4 + # ' 9 { );' V ' 4#e`' " / 0 * - ' <I > / * t< # 4#e`' .(!,1 ,i

4* .

9"F " / 0 * A9L t72# {+ 4 + " 4 ;< F

22

@' 4@5 N9 9 (0Q 12

$&@9 (0Q G K) <

5 4@5 N9 .(

, $*

% &'

$7 <I 65

- ' <I /",0* / 1

- ' <I . 9 4 + / ,1

&

@' <

42A&*

R9 3 >#, 9

% &' 4 + &

)

Lal et al., 1999

.(

) 7

"

'

% &'

$7 <I - '

. /",0*

9 4@5 N9 R i

4K ' / (*

C5

$9 ' X i 4 H ) <

- ' .

,', <

# (A6<

4 H ) <

># 5 [* &9 ,

`#

% &' , ;

"

B#,?

z , 1 . <

- ' .

PO12 PO15 ' PO6

5 ' L

"

• M5 Z 0Q

H 2N9

$

$0

$9

&< ' 49 <,

. 4 S<

9 / 0 * ,i . <, 1 K 42Q !

$7 <I [* &9

>

- ' . 9 4@5 N9 79 / 0 *

"

>#

- ' . 49 <,

. 4 S<

$& A9 , Y&#e1

4@* ' 5 ' X i ,72 3 e 9

IJ * 9 L

R 7;' V9 K 4;l<

$ # j. ,!

$9 . &

REFERENCES

1. Acquaah, G. (2007). Princples of plant genetica and breeding. Blackwell Publishing Ltd.

2. Basudehradun, B. D., S. Bisha & S. Manhendrapol. 1989. Indian Medicinal Plants. Vol 1-5. Today and Tomorrows Pub.

3. Chadho, K. L., & Rajender. G. (1995). Advances in horticulture medicinal and aromatic plants. Vol 11. Maldorta. Pub. New Delhi.

(9)

4. Diepenbrock, W. (2000). Yield analysis of winter oilseed rape (Brassica napus L.). Field Crops Research, 67, 35-49.

5. Donald, C. M. (1963). Competition among crop and pasture plants. Advances in Agronomy, 15, 1-118.

6. Ebrahimzadeh Maboud, H., Mir Masoumi, M., & Fakhra Tabatabai, S.M. (1997). Investigation of mucilage production aspects in some regions of Iran with cultivation of plantago ovata, Barhang, Psyllium. Pajouhesh VA Sazandgi, 4 (33): 46-51. (In Farsi).

7. Gharayazi, B. (1996). DNA marker application in plant breeding. 4th Iranian Crop Science Conference. Isfahan University, 328-340. (In Farsi).

8. Gupta, M., Kaul, S., & Dhar, M.K. (2018). Identification and characterization of some putative genes involved in arabinoxylan biosynthesis in Plantago ovata. 3 Biotech, 8(6), 266.

https://doi.org/10.1007/s13205-018-1289-9.

9. Johnson, R.A., & Wichern, D.W. (1988). Applied multivariate statistical analysis. Prentice Hall International Inc. NewYork, 507p.

10. Kouchaki, A., Nasiri Mahallati, M., & Najafi, F. (2004). Biodiversity of medicinal and aromatic plants in the ecosystem of Iranian cropping systems, Iranian Journal of Crop Research, 2 (2), 200-208. (In Farsi).

11. Krichen, L., Audergon J.M., & Trifi-Tarah, N. (2012). Relative efficiency of morphological charectar and molocular marker in the establishment of an apricot core collection. Heredity, 149, 163- 172.

12. Lal, R. K., Sharma, J. R., & Sharma, S. (1999). Genetic diversity in germplasm of isabgol (Plantago ovata). Journal of Herbs, Spices and Medicinal Plants, 6, 73-80.

13. Makizadeh Tafti, M., Naqdibadi, H., A., Rezazadeh, S., A., Ajni, Y., & Kadkhoda, Z. (2010).

Evaluation of botanical characteristics and yield and essential oil components of Thymus carmanicusm Jalas. Journal of Medicinal Plants, 9 (36): 65-57. (In Farsi).

14. BeMiller, J.N. (1973). Quince Seed, Psyllium Seed, Flaxseed and Okra Gums, In: R.S. Whistler &

J.N. Bemiller (Eds), Industrial Gums. (pp. 331-337) (2nd ed.), Academic Press.

15. Mirjalili, S. A. (2008). Recognition of medicinal and aromatic plants, Volume 2. Jihad Keshavarzi Institute of Higher Education Publication. (In Farsi).

16. Mir Masoumi, M. (1992). Investigation of mucilages in Barhang genus with tissue culture and field cultivation. M.Sc. Thesis in Plant Science. University of Tehran. (In Farsi).

17. Moghaddam, M. (2011). Study of genetic diversity using molecular, morphological and phytochemical markers of some basil populations. Ph.D. Thesis. Faculty of Agriculture, Tarbiat Modares University. (In Farsi).

18. Mohammadi, S.A., & Prasanna, B.M. (2003). Analysis of genetic diversity in crop plants-salient statistical tools and considerations. Crop Science, 43, 1235-1248.

19. Moghaddam, M., Omid Beigi, R., Salimi, A., & Naqavi, M.R. (2013). Investigation of morphological diversity of Iranian native basil cultivars (Ocimum spp.). Iranian Journal of Horticultural science, 44 (3), 227-243. (In Farsi).

20. Moradi, M., & ghodrati, GH. R. (2010). The correlation and path analysis for yield and agronomic traits of spring Brassica napus L. varieties. Journal Crop Physiology, 2, 61-70. (In Farsi).

21. Najafi, F., & Rezvani Moghaddam, P. (2001). Effect of different irrigation regimes and density on yield and agronomic characteristics of Plantago ovata Forssk. Iranian Journal of Agriculture Sciences and Technology, 16, 59-67. (In Farsi).

22. Phan, J.L., Cowley, J.M., Neumann, K.A., Herliana, L., O’Donovan, L. A., and Burton, R. A. (2020).

The novel features of Plantago ovata seed mucilage accumulation, storage and release. Scientific Report, 10: 11766.

23. Rahimi, S. (2007). Evaluation of genetic diversity of Iranian coriander using molecular and phytochemical markers. M.Sc. Thesis, Faculty of Agriculture, Tarbiat Modares University. (In Farsi).

24. Saeedi AbuIshaqi, K, A. (2008). The effect of climatic factors on the active ingredients of Rosa canina in southwestern Iran. M.Sc. Thesis, Faculty of Agriculture, Tarbiat Modares University. (In Farsi).

25. Safaei, L., & Zinley, H. (2007). Comparison of yield and other characteristics related to grain yield in fennel cultivars and populations, The Ninth Iranian Congress of Agronomy and Plant Breeding, 5-7 September, University of Tehran, College of Abouraihan. (In Farsi).

26. Safaeian, N., Alamzadeh Ansari, N., & Mousavi, M. (2014). Collection and evaluation of genetic diversity of some native populations of Iranian coriander according to some morphological and antioxidant traits. Iranian Journal of Horticultural science, 45(4), 417-427. (In Farsi).

27. Shahsavaran, A. (2001). Applications of plant biotechnology and its importance for the country, Iranian Network of Technology Analysis. (In Farsi).

28. Sharma, P. K., & Koul, A K. (1986). Musilage in seed of plantago ovate and its wild allies. Journal of Ethnopharmacology, 17, 289-95.

(10)

29. Simpson, BB., & Conner- ogorzaly, M. (1986). Economic botany. MC Graw- Hill. Singapore. pp:

327-37.

30. Singh, D., Chand, S., Anvar, M. & Patra. D. (2003). Effect of organic and inorganic amendment on growth and nutrient accumulation by isabgol (Plantago ovata) in sodic soil under greenhouse conditions. Journal of Medicinal and Aromatic Plant Sciences, 25, 414-419.

31. Singh, S.K. (2003). Cluster analysis for heterosis in wheat (Triticum aestivum L.). Indian Journal of Genetics, 63, 249-250.

32. Tabrizi, L., Nasiri Mahallati, M., & Kouchaki, A., L. (2004). Evaluation of minimum, optimal and maximum germination temperatures of plantago ovata and psyllium. Iranian Journal of Crop Research, 2 (2), 143-151. (In Farsi).

33. Vahabi, A.A., Lotfi, A., Solouki, M., & Bahrami, S. (2008). Molecular and morphological markers for the evaluation of diversity between Plantago ovata in Iran. Biotechnology, 7, 702-709.

34. Warburton, M., & Hoisington, D. (2001). Applications of molecular marker techniques to the use of international germplasm collections. CAB International Publishing: New York, pp: 83-93.

35. Zhang, P., Dreisigacker, S., Buerkert, A., Alkhanjari, S., Melchinger, A.E. & Warburton, M.L.

(2006). Genetic diversity and relationships of wheat landraces from Oman investigated with SSR markers. Genetic Resources and Crop Evolution, 53, 1351-1360.

Referensi

Dokumen terkait

Assessment of Genetic Diversity in Some Iranian Populations of Bunium persicum using RAPD and AFLP Markers.. Iranian Journal

Genetic diversity of helmeted guineafowl Numida meleagris based on microsatellite analysis.. Genomic analysis reveals variant association with high altitude adaptation in native

The interaction of salinity stress and ammonium sulfate on growth and nutrients concentration in Valencia orange plants grafted on lemon Majid Rajaei* Associate Professor, Soil and

The results showed that with increasing sampling time, flower diameter, chlorophyll content, relative water content and relative fresh weight decreased and the activity of antioxidant

B% O LL Leaf length LWLeaf width NLNumber of leaves per plant FW Fresh weight, DW Dry weight, Chl.a Chlorophyl a, Chl.b Chlorophyll b Chl.a + Chl.b Chlorophyll a+ Chlorophyll b,

Evaluation of nutritional status of kiwi vineyards in Guilan province using Compositional Nutrient Diagnosis CND method Ali Lahiji1*, Maijd Basirat2 and Alireza Fallah3 1, 3..

Mean comparison interaction effect of year and NAA on fruit average diameter of Miyagawa Satsuma mandarin Y1 = first year, Y2 = second year, Y3 = third year, Y4 = fourth year, Y5 =

Mean comparision of phonological stages effect on total phenolics, total flavonoids, total tannins and antioxidant capacity of Atriplex patula.. Alirezaie Noghgondar et