53 3
1401 ) 566 - 553
( Vol 53, No 3, Autumn 2022 (553-566)
DOI: 10.22059/ijhs.2021.328082.1958
* Corresponding author E-mail: [email protected]
:
) Calendula officinalis L.
(
#$ %& ' ) *+ , - 1
2
0 1 1 2 *
3
1 2 3 .
! " # $ % & $ '
:)* + ,) 12
/ 5 / 1400 - :3 45 + , 9
/ 9 / 1400 (
4
"
,
&
8 9 $
&
"
:
! :
"
; <
5
; =
>#"
?
@ ABC D E، D F <
8
! G HI!
J 3 K
"
L $ , K G"
, M N 8 * ) . O, ! P5 G " D $ QRC S" T
U 5 : ") VW 1
2 C
! &
: 1 2 C
&
"
$ 9C) VW " J B = < ( ?RC 200
400 B 8 " ( < " X 8 $
I!
" & G . 8 " #"
: " U . X * Y, ZR Q [ K< N ; * \ C
: !
2 C
@* K> &
39 36
;8 I^ _ [ C
! 22 21 ) C
36 29 < C
! <
" )>=
! I , 8
)`BE . 200 B
" X 8 <
@* K> @ J B = <
21 ! ;8 I^ _ [ C 19
@ C )
<
! <
G " G HI! . ! I , " )>=
a* ; ; * B J & ! X J & C ) <
@ b
@ & = 5
b
" '
\
& = 5
"
"
: "
: !
2
& C J B = <
200 B X 8
"
<
;C ?
8 G . U . " D $ QRC )>c d & ?
5 ) 6 ) B :
; *
; <
! <
) J &
.
Effect of different levels of biochar, hydrochar and salicylic acid on the growth of Calendula officinalis L.
Sara Khaleghi Gazik1, Vahid Reza Saffari2* and Shahrzad Daneshvar3
1, 2, 3. M.Sc. Graduated, Associate Professor and Ph. D. Student, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
(Received: Aug. 03, 2021 - Accepted: Nov. 30, 2021) ABSTRACT
Recently use of biochar and hydrochar have been considered as a suitable method for improving soil fertility, fixing soil pollutant and store carbon inside the soil. In this study the effect of different soil improvers at 5 levels including biochar at 1 and 2% w/w, hydrochar at 1 and 2% w/w and no soil improver and also salicylic acid at 3 levels (0, 200 and 400 mg-L) were applied on marigold plants. This experiment was a factorial based on complitly randomized design. Results showed that biochar and hydrochar at 2% w/w level increased flower life at 39 and 36%, respectively, but decreased ion leakage 22 and 21%, and also malondialdehyde at 36 and 29%, respectively compared to control treatment. Salicylic acid at 200 mg-L concentration increased flower life at 21% and decreased ion leakage and malondialdehyde by 19% compared to control treatment. Highest ratios of shoot dry weight, root dry weight, total chlorophyll content, peroxidase and ascorbate peroxidase enzyme activity were obtained by application of biochar or hydrochar at 2% w/w and salicylic acid at 200 mg-L. These results indicated the positive role of soil improvers.
Keywords: Ion leakage, malondialdehyde, root dry weight, total chlorophyll.
&
3. 27 #- 8 9 ! : 1- ; 9<
' =- ;1 7
&>
3?
#+4 .
&@ 3. A A
B&!& . +1 7
A #.
C ? D A &@
;( 20 )
Kader et al.,
(2002
. 8
&-
&C,( 9 ! 3. E " 3. !F
3.
#+ . 7 G H 7 A 2 - 7 9 IJ H 7 . A
&@
;(
. 7 A
0 K-
;5?
@ :
F
&!
" &I5. ;1 7 L =- E
K+(
2 !F &- 7
. # MG A ;(
) Sohi et al.,2009
. (
7
&- 7 2 K+( N5- A .
0I>
9 F 3.
;( / 0 /& .
) Sun et al., 2014
.(
& . /
2 - . A 9,*,>
. O 3@ ;(
2 # A P
*- G #8
Q? R +G SIT 3+
*8 ='( U
V H CD(
3.
W 2
=- L A 1. .F
#$X- ;(
) Sohi et
al.,2009
DP #8 : 8 YP . H #. 2 ZP .(
#[
Q\
-
#@
G 05CG AO . ; 8#]
; ^ IG 3. UF
&I5. F 2 0
- #
) Glaser et al., 2002
.(
& . #. @ 3@ ;( 20 _
/
&>
0 ! U&/ 7 20
A - 500 3?
+G (
?&- # 2 0 &I5. `
E "
0 # 2 &!F A
) Namgay et al., 2010
.(
4 W 4G 2 0 3@
8 /& . 3.
#+1.
;4@
2 a >
b #"
`I(
: 8 N GF A +GF 0 1@
0 # )
Jia et al., 2019
.(
2 /& . #. @
; 2 H 0 #. +Ic- # $d> H-Z (
(Fathi et
al., 2021)
.
0 / - 2
? 0-
#@
D.
3@ ;(
7
#@
&.
G 2 0 e#
.F )
Hydrothermal carbonization
(
0 !&> 2 &> ;1 7 -
&
) Novak et al., 2014
A #. .(
2 &. e7O A#+ @ AB#G /& . 3. ;I1G / 0 0 !&>
-#? 0[ 2 &> ;1 7 7 f,4- 0 - g#f- . /& . 7 #+4 . 20 0 !&> / 0 -
0 .
) Hu et
al., 2010
:,. !F 2 - ; - 3. 3+1. F #. 2 ZP .(
#[ DP 7 #( ;( H - / 0 h -
0 K- Q\
0 . A #.
) Petrović et al., 2016
.(
7 - A
/ 0 -
&>
3.
: @ 7 A 3G ,*
A 7 IJ 9
CO2
N2O
)
Laird et al., 2010
( (#>
` H.#@
E "
)
Lehmann & Joseph, 2009
( 8 : ,*[ i A
E "
8 : 9,*,>
E "
8 : 8#]
;
^ I>
> @ G&
"
E
) Masto et al., 2013
2 (
#@
.
#. @
/ 0 2 H /
&!
& ! e 7
;1
&>
2 2
: 8 )
Paneque et al., 2019
.(
* 1 ! ( 0 (
&>
0 1@
D.
<
0 (
7
#>
I @ V
*D8
;(
3@
3.
&DP - 2 3I
&
&- G : G 5- N MD>
0 & G
)
Zhang et al., 2006
(.
* 1 ! ( 0 ( 7
&-
& !
^ A
^ DC ( 0D
2 N5-
;(
3@
. YP
j P 9 k!
2
#.
#.
:D>
A ' =- -
&
) Davis, 2004
? " #. @ .(
( 0 (
* 1 ! A
0D F#8 A
& G
& G
&? 3* ? 7
3G G7 0 #> 3+1.
3G7
& ^ +G UQ?
lKi m C/
n 4\
&+8 ;( Q #$ 2 0 ;P#( +D(
)
Aftab et al.,
(.2011
7 G0 #. 3" 9 * 1 ! ( 0 ( #. @
&T : 8 3. #oD-
^ 9 3J ( 3pD\ #'J ^&T 20D
0 2 #> 7 q#. r'( 9
) Alaey et al., 2011
.(
_ 20
;(
3@
#. @ 0 (
* 1 ! ( 2
"
`I(
: 8
; ! k8 N GF V . & (F 7 0 1@ #
q#.
0 )
Yildirim et al., 2008
.(
> #. #. @
2 0 e& !&! H / 2 * 1 ! ( 0 ( 0 4,. &I5.
(Hosseini et al., 2016)
.
34 5.
&.
3>
A 7
"
&G 2
@ D(
(Asteraceae)
. G e *P
Calendula officinalis L.
;(
" . C+(
2
*[
H 2
&i 7 2 A
0-
#+
3G
"
- 3G A
#-
@ A ;(
)
Borghei
et al., 2011
(.
A s8 2 #+1 &T 3. 5. 34
I(
#
;4@
3.
;*P tG
&D+- 1. A
u
3 i
@ A 3Ik?
A 7 #. @ 9 A
) Ghasemi ghahsareh et al., 2011
3 D 3. 3?&> . .(
"
E A
&G i
&D?
U
&D?
U
# v
&4@
#
0 P w >
&
&.
2 8 0J
&- Z[
i 0D+1 0 g 7
H W : K+(
2 7 - 2
!F Z[
i
& . /
0 /
# 2 . 0 ( (
* 1 !
;5?
&I5.
# * P K[
V 0 A 2 34 5.
&.
.
1
8
H W : 3.
&[
V 0*
G (
^ 1398
,*
3G =>
>
0 4G 2 4@
7 A C4G 2 0 5
.
#D
#@
- .
&-
; kJ
#z?
8 30 3?
!
&T
^ 57 3?
# J . K>
u 1754
#+- 7 r'(
0=- 2 - H . 0i 9J 18 0i
#c@
32
3?
+G (
# oG e .0
&T
;.
I1G ,*
3G 3.
&T - H CG
&T
^ F 7 - : 35 >
45 0[
&.
.
%#T `! J 9 &+@ 8 V &[ 3. : -7F wZ- @
. 8 f>
4
&+@ 8 .0 e oG # >
&- 9- ^
E " 20DD@ %Z[
RD r'(
9-
& . / 1 2
0[
G7 0 / 1 2 0[
7 G 0
) e0P
#f- g
& . / 0 / ( 9- e &+@ 8
3(
0 ) * 1 ! ( 0 ( r'(
200 400
-
* e#
" . &. (#+ ! #.
E 3.
@
#.
2 0 2
#
0*
3.
;I1G 0 1 2 0[
7 G . .
&
/
0 /
;( 3.
F 0- 2 7
&
;(
#>
3+1
&*,- }
# 0 . .
&
/ 7
&
;(
#>
3+1 5>
3
#.
A H
&MD-
&
;(
#>
3+1 j 7
&
4"
0 7
!
2
* -
#+- A
&IP 2 0 _
# ! F 3+1
) - A 300 3?
1*(
&
b
#. ( A 5>
3 .
&
/
,+G U
# 0 .
;5?
3 5>
0 /
&
;(
#>
3+1
3.
_
#@
D.
& ( 0
#>
-
^ - A 220
3?
& 1 *(
b 48 20 . 3.
0- V 12 (
;P
&>
Z@
#J 2 1 0G
? 0- i 9[
7 H :D@
- A 60 3?
& 1 *(
b F 4"
#@
2
jm(
3.
&[
V
&
F 2 0 . 9IJ 7 F 7 - :
&
0 / 3.
0 - 30
# e 300
* -
#+ !
F U
#' - 3+1 3.
0- V 10 3 J
# >
&"
2 jm(
3o +G H
&(
m(
& 1G h ? F A
0 2 j 7
&IP 7 [ 8
&-
? 0- . J - 0G 2
h ? F A j 7 4"
0 F 7 - : K+(
2
# 0 .
#.
( b =>
V oG e 0 2
&f"
d>
# $
& . / 0 /
#.
0 d>
# $ V K+- >
_ 0 2
;(
. SIT H V 7 F oG 3@
# 3.
- 2
#.
A
&>
0 !
& . / 0 /
#,+(
a -
&
1.
A 7
&P 9- . 7 0G 2 0 7
F
"
a -
# . 9IJ 7 +G
^ 4G n 0
;
#+ !
"
E 0G 7 2
# A 0 3@
- F 6 / 4
( 7 jD
#.
#+-
&.
@ " &DP 3. 3@
& . A
- 3+" D L(&+-
&
. jm(
n 4G A 34 5.
3*i#-
A 5
#.
3.
9"
0*
A
*[
) A
#'J 3G K>
u 25 ( +G
#+- ( +G
^ 2 0 0G 3.
&
3G A 3@
# 0*
n 4G
#J
#
;8 . - 2
j 7 +G
^ n 4G 9 P
&*=-
^ 0 (
(
* 1 ! T 3
#- 3*i . 8 3*[
7 - G 14 7
9 rI[
3.
&[
V
#m(
A
#.
oG e 0 . O 7 e
3.
•
#@
;(
3@
H !
&*=-
^ 0 ( (
* 1 !
#- 3*i 8
#.
2
&[
V
#
;8 . H H i
#(
A
€"
A
&-
&8
&!
B 27 0G
# A 0 >
3 D
&5]
9 A 0 0?
3.
0 V 3.
: @
; Q H 3@
#- 3*i
& P w - 3.
&DP A 5+G
0 2 H 2 D 3+"
-
&
.
!
"#
$
% &
'(
% ) *
# + (
&T
^ F 2 7 - :
#'J
# P ^&T
&+- L(
9
&- 0G 7 2
# A
;
#.
A
#J
#
;8
: -7F A 5+G 7
4"
34 ( 3J 0G 7 2
# A
0 . 27 0G ;5?
# 9 # P ^&T A 7 H !
7 . 0
# 0@
e 9 7 A
&.
3>
A F > ;=>
CG •G L(&> 9 A Q ;-ZP
7 j 0
0* -7 e >
• >
; 9 F #-W
# 0
&+- L(
K>
9‚
9 -7 H A
# P ^&T 20DD@ €,4- 3>&.
9
&.
.
, " ! $
&
%
* -
.
G& ;4G - n 4\ ` (F - :oD( A #.
3.
_
Kumar (2011)
0G 27
# A 0. .0 # H &MD-
# 7
&.
3>
5 3k'J
#.
q 1- A H@ ƒ &( 3* ( 3.
Q\ @ 3.
1 #'J
+G (
#+- j 3 5> h.#-
7
;1
&
A& ;1 A #.)
&
7 ! +i A
(q#. r'(
3!&!
2 #J U : -7F A
10 -
* !
#+
7 0k. .0 # 38 ‚ F 3. #' - UF
24
#+ ! ; 0 - ;P (
3G& G
) EC1
(
.
7 2 K+(
^0- #+- EC Metrhom
&4@ ;" ()
jm( .0 ;< #J (j <&(
3G& G V0- 3.
48 ;P (
#8 2 #J
0k.
F 7 3G& G -
A
& k- !
; 0 - .0 2 #J 2 C4 -7F
#+ !
) EC2
w 0o- (
27 0G
# A ;4G 0[
0 # 3I( =- # 7 3'. 7 G&
.
% EL = (EC1 / EC2) × 100
/ ) "
)/
1 / 0
# e 7
#>
& G 3G 10
* -
#+ !
&+(
80
0[
( 0 2 fP 2 i 9[
3.
0- V 5 3 J
(
#+G
& K B . 2700
#J 2 0 jm(
3
* -
#+ ! fP 2
#.
3+
Q?
U F
&T
^
&- a
8 / 646 2 / 663 470 G
&G
#+- 3.
@
#+ m(
&+8
#+-
&"
0G 2 0 . 9@ 9 8 #*@ .
K+(
2 7
=- ^&-#8 3I(
#.
`1i -
* e#
#.
#> 7 e#
0 _
) Lichtenthaler, 1987
.(
$ 0
$1
#.
A 27 0G
# A &! - ;M*\ A 0 0!F
_
Heath
& Packer (1968)
@ 3.
3+8#
0 Q?
U
&G
a&- ^&T 532
G
#+-&G 0G &"
2 7
&- " ` #‚
μM-1cm-1
155
#8
&-
^
# 7
# 2 K+(
0 .
A= €BC
3@
H
#8
&-
^ Q? A
U
&"
0G 2 0 2 ) ( €
#‚
`
"
&-
B
#P
„
&@
V
C
;M*\
j *m @
#.
`1i
* - O&-
;(
.
2 34
A #.
_ 7 H …> # :oD(
Bradford (1976)
K+(
2 .0 UQ? V0 3G& G
#+-&+8 #+ m( .
UV-VIS
^0-
Cary50
) (
;"
&4@
F
! (
a&- ^&T 595
20G &" #+-&G G 0
. H …> # ;M*\ .
D=D- 7 2 K+(
# 3I( =- 0G +(
0 .
, 1 5 6/
k8
; ! F G N
# 0 1@
7 . K+(
2 7 : - 2
&@
^ 0G 7 2
# A 0 . H _ 3
* -
#+ !
&*,- } :D@
i A 2860 -
#
#+ ! .
#8 K18 V
+ ( N 50
* -
&- O ) 7 ( pH=
20
# - !
#+
F U
W 1@
3G 75 / 0 0[
20
# -
#+ !
&@
^
"
€!
100
# -
#+ ! fP 2 F G
&.
. 8 : Q?
U 3.
9 !
0 1@
& (
&@
^ . 7 2 A 30
$ G 3 A 3.
0- V 3 3 J
&T
^
&- a 436 G
&G
#+- . C+(
2
#+-&+8 #+ m(
UV-VIS
^0-
Cary50
0G 7 2
# A
0 )
Putter, 1974
( . k8
; ! F G N
#.
`1i 0i
F G N 0 -
# H …>
9@
* -)
#
&- (e
&?
100
# -
#+ ! fP 2 3.)
;(
F 0- 2 7 _
#.
&8 (
=- 3I(
# 0 .
, 1 5 7+1
# 6/
#.
A 0G 27
# A k8
; ! N GF F
& ( . V 7 7 0 1@ #
_
Nakano & Asada (1981)
0 # 2 K+(
. H
_ 3 -
* !
#+
&*,- } :D@
i A 2680
-
# !
#+
.
#8 K18 V + ( N 50 -
*
&- O ) 5 / 7 ( pH=
100 -
# !
#+
F
& ( . V 5 / 0 -
*
&- O 100
-
# !
#+
EDTA
10 -
*
&- O 100 -
# !
#+
fP 2
F G 30 -
# !
#+
F U 1@
W 3G 15 -
*
&- O
&.
.
k8 !
; F
& ( . V
#
@ 1 0 7
#.
( b 1@
0 (
&
F
& ( . ( 0
@ : Q?
U
&T
^
&- a 290
G
&G
#+- . 7 2 A J
3 A 3.
0- V 3 J 3
0G 7 2
# A 0 .
3 o>
jG 2 . 2 K+(
7 e#G 8
SAS
3,1G) 1 / 9 ( - 31 - CG H . K+(
2 7
&-7F
H G r'(
5 0[
e oG 0
.
0
9#
:;
!
#
"
$
&
%
+G R o>
3 K[ jG V
&-
&8
&!
B H
W : 4G 3@
#$
V
*[
D- h.
0DD@ %Z[
2
"
E 0 (
#. * 1 ! (
>
-
&- V K[
'- 3k!
r'(
1 Dk- 0[
0 V #$
9. +-
F G
#.
K[ - >
V 3.
# \
&T 7
^
# P 9
r'(
1 0[
Dk-
&.
0?) ^ 1 .(
%
G+
R 3@ 4G .
: 8 #. @
;M*\
A D- h.
0DD@ %Z[
2
& .) E "
/ 0 / &- & (
0 (
* 1 ! (
& e 0G 4" 7 -
0G
8 4 .;
^ 0?
1 . R +G 3 o>
%Z[ h. D- jG
* 1 ! ( 0 ( E " 20DD@
K[ "#. #.
V
&-
&8
&!
B 34 5.
.
Table 1. Results of variance analysis effect of soil improver sources and salicylic acid on some morphological parameters of marigold.
Source of variation df Mean of squares
Shoot dry weight Root dry weight Flower diameter Flower life
Salicylic acid (SA) 2 33.70** 10.37** 500.48** 13.53**
Soil improver sources (SO) 4 25.21** 12.70** 517.89** 9.29**
SA× SO 8 1.28** 0.53** 24.13** 0.10ns
Error 30 0.49 0.14 9.65 0.61
C. V. (%) - 14.24 18.12 7.95 12.20
** * V K> ` >#> 3. :ns
Dk- r'(
5 1 Dk- V K> &IG 0[
.
*, **, ns: Significantly difference at the 5 and 1 of probability level\, and non-significantly difference, respectively.
3.
3G&
3@ A e 0G 4" 7 - H #+4 .
&
>
200 -
* e#
#.
#+ ! 0 (
@ . * 1 ! (
#.
& . / 0 / 2 0[
G7 3.
#>
` >
3.
- 38 / 9 79 / 8
# e 20 4-
0 3@
31 - . >
#K[ r'() 0 0 ( (
(
0P * 1 !
@ e
#.
D- . 0DD@ %Z[ h 2
E "
) 75 / 1
# e 8 ( : : . 7 5
#.
#.
A H
;K[
3.
: G 0D+ Q
9 ) 1
&I5. .(
K[
V 4 .
@
#.
& . / 0 / -
&>
3.
#+(
(
#+5.
2 3.
&- AQz- 3.
9 !
#]
; 8 I>
^
@
& >
G
. O A
& . / 0 / H Dp +
AO . 9 1G
F 05CG
; AQz- &- F
U
;I1G .
H +(
4G 0 2 3@
@
#.
& . /
#+1.
;4@
9
#Kk?
A F
#8 7 4"
2 3.
&T Dk- A 8 : . 3@
+G R H W :
&1
&.
) Vaughn et al., 2013
_ .(
20
;(
3@
2
;D.
&1DJ
^ . 8 /& . 3.
L =-
;4@
2 7 4"
2 : 8
;8 )
Guo et
al., 2018
.(
@
#.
&I5. `I( G * 1 ! ( 0 (
3@ 0 5. 34 2 4 V K[
. R +G H
2 A
Bayat et al.
) (2012
5. 34 2
.; ; . '-
%
#
#.
( H
;K[
0 20 4-
3@
. ;M*\ : 8
Z[ h. D-
" 20DD@ % E
0 ( &- &
(
* 1 !
w -& P 34 4" 7
8 : 3. .;8
&T 3
#+4 . H 34 4" 7
0 (
* 1 ! (
200
-
* e#
0 #. @ . #+ ! #.
/ 2 3. G7 0[
- 06 / 5
# e
#+ @ H
#K[ r'( F -
@ 0. * 1 ! ( 0 ( (0 )
#.
%Z[ h. D-
0DD@
2
"
E 3.
- 36 / 0 9 ) 0 20 4- e#
2 3+8 .(
A H W : . 3+8
&- d>
# $
& . /
#.
0 2 7 +D
@ O
>
. 8 : 7
#>
4"
0G e
&
34
&1
&.
)
Zhang et al.,
(2014
. H /
&!
& ! e 4G 3@ 0 2 7
;1
&>
2
2 0*
A >
0 2 . 0 / Ho!
Z‚ 8 U 8 : ;8
) et al., 2019 Paneque
.(
2 #@ _
&*=- 3@ 0G
^ 0 ( (
* 1 !
9 3"
#.
0 G 7
#oD- 3.
0 4 V K[ &I5.
) Alaey et al., 2011
.(
d>
* 1 ! ( 0 ( # $
V #$ . ^&*( 0 N MD>
W 2 A . q 0
^&*(
!&*( N 1 >
+" ( ;] Ki ^&*(
- 0 .
)
Vanaker et al., 2001
.(
'(
) ( #. . 2
3@ 0 # €,4- . #. @
/&
/ 0 Dp
H ^&*=- &- & .
( 0
! ( 1
* 8 `I(
: 3. ;I1G 9 #'J
>
3G& 3. .0G0 0 A
. 3@
#+4 H 9 #'J
>
200 -
* e#
#+ ! #.
( 0
! ( 1
* .
. #. @ /&
/ 0 2 G7 0[
>#> 3.
` 3.
- 92 / 57 54 / 49 -
*
#+-
#+ @ H -
> 9 #'J 0P
e ( g#f- 0
! ( 1
*
Z[ h. D-
% - 3. 20DD@
63 / 26 -
*
#+- 20 4-
0 9 ) 3 ;4@ #+1. 3. /& . - : 8 . .(
0 #+4 . 2 & G 0 b #" a > 2
) Habibi
et al., 2017
.(
@ H Dp
#.
0 ( (
* 1 ! . YP
8 :
#'J 9 34KD.
F
#8 0
) (Jabbarzadeh et al., 2009
.
& e 0G 4" 7 #. * 1 ! (0 ( E " 20DD@ %Z[ h. D- 9. +- #$ H CG -31 - .1 9 34
5.
.
Figure 1. Mean comparison interaction effect of soil improver sources and salicylic acid on shoot dry weight of marigold.
9 2 . - 31 - H CG
#$
9. +- D- h.
%Z[
20DD@
"
E 0 (
* 1 ! (
#.
7 4"
34 34 5.
.
Figure 2. Mean comparison interaction effect of soil improver sources and salicylic acid on root dry weight of marigold.
5.34 9 #'J #. * 1 !(0 ( E "20DD@ % Z[ h. D-9. +-#$ H CG -31 - .3 9
.
Figure 3. Mean comparison interaction effect of soil improver sources and salicylic acid on flower diameter of marigold.
gh
ef f
de
a
bc
fg
cde
def bcd
a
b
h
fg g
0 1 2 3 4 5 6 7 8 9 10
Control 200 400
Shoot dry weight (g)
Soil improver sources x salicylic acid (mg/L) Hydrochar 1% w/w Hydrochar 2% w/w Biochar 1% w/w Biochar 2% w/w Control
fg
bc cde de
a
b
g
cd def ef
b
bc
g
f g
0 1 2 3 4 5 6
Control 200 400
Root dry weight (g)
Soil improver sources x salicylic acid (mg/L) Hydrochar 1% w/w Hydrochar 2% w/w Biochar 1% w/w Biochar 2% w/w Control
ef
cd de
cd
a
bc ef
bc cd
c
a
b
f de ef
0 20 40 60 80
Control 200 400
Flower diameter (mm)
Soil improver sources x salicylic acid (mg/L) Hydrochar 1% w/w
Hydrochar 2% w/w Biochar 1% w/w Biochar 2% w/w Control
8 9
* )
+G R 4G . #. @ 3@
&
/ 0 / `I(
8 :
&T
^
# P 9 34 5.
> 3. ;I1G
0 3. 0G0 3G&
A 3@
. /&
/ 0 2 0[
G7 Dp H . /&
/ 0 1 G7 0[
3.
>#>
` 8 `I(
: 39 36 27 20 0[
A ^&T
> 3. ;I1G 9 # P 0
h. D- g#f- e0P)
[
%Z 0G0 (20DD@
9 ) -a
4 ( 0 ( ^&*=- .
G * 1 ! (
$d>
# 0G +Ic- 8
4
&T
^
# P 9
;I1G 3.
>
0
; 3.
&
3G A 3@
#. @ 200 400 -
* e#
#+ ! #.
( 0
! ( 1
*
# P ^&T 9
>#> 3.
` 0i 28 16 0[
> 3. ;I1G
0 ( g#f- e0P) 0
! ( 1
* (
8 : 0G 9 ) -b
4 ( F . 7 - 4 &MD- 3. G 0*
#.
( K[ #. /& . V #$
V 4 2 e oG &I- . 0 2 4G ;8#
3@
K[
V 4 3. &I- . &T
Dk- ;8 : 8 A
) Wang et al., 2018
#. @ .(
0* `I( D 1@&* 2 * 1 ! ( 0 (
7 j 20 > 0 #
24 0G 9 7
7 j 0 3 ! i
30 0* 3. 7
0D+8
) Davis, 2004
.(
! , "
$
&
%
* -
+G R o>
3 K[ jG V
8
&
!
&
B
& . H
W : 4G
#$ 3@
V
*[
D- h.
0DD@ %Z[
2
"
E
* 1 ! ( 0 (
#.
>
- K[
V
&- 3k! '- r'(
1 0[
Dk- 0 V #$
+- 9.
F G
#.
>
-
K[
V 3.
# \ G& ;4G 7 -
&!
A 0 0!F
r'(
1 0[
Dk-
&.
0?)
^ 2 .(
9 4 . ( a
- 31 - H CG h. D- #$
%Z[
" 20DD@
E
#.
9 # P 34 5.
- 31 - (b
H CG 0 ( #$
(
* 1 !
#.
# P 9 34 5.
.
Figure 4. a) Mean comparison effect of soil improver sources on flower life of marigold, b) Mean comparison effect of salicylic acid on flower life of marigold.
0?
^ 2 . R +G o>
3 jG D- h.
Z[
% 0DD@
2
"
E ( 0 (
* 1 !
#.
K[ "#.
V 8
&
&!
B
& .
34 5.
.
Table 2. Results of variance analysis effect of soil improver sources and salicylic acid on some physiological and biochemical parameters of marigold.
Source of variation df
Mean of squares Ion
leakage
Total chlorophyll
Malon
dialdehyde Protein Peroxidase activity
Ascorbate peroxidase activity Salicylic acid (SA) 2 174.64** 1.18** 499.45** 239.81** 26.24** 212.19**
Soil improver sources (SO) 4 301.17** 2.11** 320.09** 160.11** 28.96** 163.60**
SA× SO 8 2.66ns 0.10** 7.47ns 20.43** 0.58** 10.04**
Error 30 36.99 0.03 32.70 11.12 0.27 2.87
C. V. (%) - 14.67 12.82 14.07 16.77 12.43 14.34
** * Dk- V K> ` >#> 3. :ns
r'(
5 1 0[
&IG V K>
Dk- .
*, **, ns: Significantly difference at the 5 and 1% of probability level, and non-significantly difference, respectively.
b a
b a
c
0 1 2 3 4 5 6 7 8 9
Flower life (day)
Soil improver sources (w/w) (a)
c
a
b
0 1 2 3 4 5 6 7 8
0 200 400
Flower life (day)
Salicylic acid (mg/L)
(b)
.
+G R 4G . #. @ /&
/ 0 2
34 ;4G : @ `I( 5.
G&
& 3. 0 3G A
. 3@
O
#>
H - ;4G G&
>
0 ) 96 / 47
(0[
H
#>
H - . F
&
/ / 0
2 G7 0[
>#> 3.
` - 3.
33 / 37 50 / 37
0[
. . &.
H h. D- )*+,- %&'(
0DD@ %Z[
2
K>
V Dk- A 04G 20 4- )
9 -a
5 (.
#. @
( 0
! ( 1
* ;4G : @ `I(
G&
0
;M*\ .
200 400 -
*
# e
#+ ! #.
( 0
! ( 1
* 3.
>#>
` 19 10 ;4G 0[
G&
0 3. ;I1G
0G : @ )
9 -b
5 (.
2 4G 4 W T
0 3@
8 . /&
3.
#+1.
;4@
#C. +8F 2
# * P V K[
8 B&!&
H 2 3.
&T
Dk- A
&I5.
3@
. +G R H W : '-
; .
;
) Seleiman et al., 2019
@ .(
:
;4G
& G
2 .
@
#.
/& . -
&>
. d>
# $ F
8 :
; 05CG F
U
&- Qz- A
#- LI>
;1G
) Nemati et al., 2015
. (
- #MG 3.
0(
3@
0 (
! . * 1 ! (
A e G - A
+GF 1@
0 G C/ m lKi : 8 `I(
4\
n
# * P A
4\
n -
&
) Aftab et al., 2011
. (
_ 0 2
;(
3@
;M*\
1 / 0
* - 0 ( O&-
;4G - * 1 ! (
3?& 2 ; ! #+ !
;M*\ CG#8 150
0 #*@ O&- * - N 0(
4 4
;M*\ 0[
200 > O&- * - 32
- : @ 0[
0
) Stevens et al., 2006
(.
/ ) "
)/
R +G
#- LI>
. 27 0G
# 9 8 #*@ A +D(&+8 2 CG A
4G 9@
@
#.
D- h.
Z[
% 0DD@
2
"
E
&*=-
^ .
&
&- ( 0 ( ! 1
* 0G
8 4 -
#*@
8 9 9@
#.
q
; .
.
#+4 H -
#*@
8 9 9@
r'(
200 -
* e#
#+ ! #.
( 0 ( ! 1
* .
@
#.
.
&
/ / 0
2 0[
G7
>#> 3.
` - 3.
65 / 2 42 / 2
-
* e#
# #.
e
#> 7 q#.
#+ @ H - F
r'(
#K[
0 )
( ( 0 ( ! 1
* 0P e
#f- g
.
&
/ 0 / 3.
- 85 / 0 -
* e#
#.
# e
7
#>
#.
q 4- 0 2
# 0 ) 9 6 .(
31 - (b 5.34 q #. & ;4G G #. E " 20DD@ %Z[ h. D- #$ H CG -31 - (a. 5 9 -
H CG #$
0 (
(
#. G& ;4G #. * 1 ! q
34 5.
.
Figure 5. a) Mean comparison effect of soil improver sources on ion leakage of leaf of marigold, b. Mean comparison effect of salicylic acid on ion leakage of leaf of marigold.
ab
b b
b
a
0 10 20 30 40 50 60
Hydrochar 1% Hydrochar 2% Bioc har 1% Bioc har 2% Control
Ion leakage (%)
S oil improver sources (w/w)
a
b b
0 10 20 30 40 50
0 200 400
Ion leakage (%)
Salicylic acid (mg/L)
(a)
(b)
q #. 9@ 9 8 #*@ -#. * 1 ! ( 0 ( E "2 0DD@%Z[ h. D-9. +- #$ H CG -31 - .6 9 34
5.
.
Figure 6. Mean comparison interaction effect of soil improver sources and salicylic acid on leaf total chlorophyll content of marigold.
H W : 4G 2 0 3@
& . /
#+4 . H
d>
# $ 8 : CG 2 A
&+8 +D(
A
; .
8 :
&+=- A
#*@
8 9 .
@
#.
& . / 3.
! 9
>d
$
# +1- N Q? F #.
U D-
&
e - 0 . 3@
? 5- 8 #*@ 3G 0CG 7 9
;(
)
Abeer et al.,
.( 2015
H +G R . 3+8 A
Zulfiqar et al.
) 2019 (
2 7 +D
&CD (
& G e
&1
&.
.
^&*=-
2
*@
. Dk- &T 3. * 1 ! ( 0 ( A
&+=- A 8 9 8 #*@
: 3@
. +G R H
W '- :
; .
;
) Hayat et al., 2010
.(
0 (
(
* 1 ! 3.
9 !
& . +D(
#*@
9 8
#$
#=- E
#.
#]
; 8
&+8 +D(
A 7
#T S ! A k8
; ! F G N
& 1 . 8 : r'(
# * P
&+8 +D(
: G
) Gautam & Singh, 2009
. (
$ 0
$1
3+8 - 2 H 3@ 4G -
&!
A 0 0!F
8 . : . %&'(
&
/ / 0
: @ 0
- . 0D@
H >
0 / 1 G7 0[
0
K>
>
0G &?
3. ;
&
3G A 0 - 3@
H - 2
>
0 28 / 49 -
#
# e
#.
# e
#> 7
#.
q
>
/ 0 1 0[
G7 3.
- 80 / 45
- e# # . #> 7 e# #.
# q 4- 0 0 2 . 0 /
.
&
/ 2 0[
G7 G . /&
1 G7 0[
- &!
A 0 0!F
#.
q 0i 29 36 15 0[
> 3. ;I1G 0G : @ 0
) 9 -a
7 (.
( 0
! ( 1
* G
@ `I(
: - &! - A 0 0!F
#.
q 3G& 3. .0 A
;M*\ 3@
200 400
* - e#
#+ ! #.
(
! ( 0 1
* - -
&!
A 0 0!F 3.
#>
>
` 0i 19 14
@ 0 3. ;I1G 0[
:
0G . . H >
200 400
* -
#
#+ ! #. e (
0
! ( 1
* K>
V Dk- A
; 0G &?
) 9 -b
7 (.
# 0 1@
& ( 0 m ! A n 4\
4G ` (F 20D
!&*( r'(
- 0 . A &! - r'(
0 0!F
0 !&>
#8 H T 20 0D F
7 €" &DP 3.
- 3+8# #MG & > 0 1@ ` (F &
) Demiral &
Türkan, 2005
.(
b& 8 +D 7 2 /& . #. @
A &! - - : @ `I(
0 0!F 0
) Kumar et
al., 2019
. (
A &! - - : @
0 0!F q#.
#$
@
#.
0 ( (
* 1 ! 2
#"
38 G _
0 2
;(
) Yazici et al., 2007
.(
2 34
.
@
#.
D- )*+,- %&'(
h.
E " 20DD@ %Z[
. H Dp 8 0 ( &- & ^&*=- :
* 1 ! ( -
#. H …> #
q 2 34 5.
3. ;I1G >
0 0G
3. ; 4 8
3G&
3@ A .
#+4 H
…> # 0 - H
r'(
200
* -
# e
#+ ! #.
( 0
! ( 1
*
#. @ . .
&
/
2 0[
G7 3.
- 46 / 30
# # - e
#.
# e
efg
bc cde cde
a
b efg
bc
cde cde
a
b
fg
def fg
0 0.5 1 1.5 2 2.5 3
Control 200 400
Total chlorophyll (mg/g FW)
Soil improver sources x salicylic acid (mg/L)
Hydrochar 1% w/w Hydrochar 2% w/w Biochar 1% w/w Biochar 2% w/w Control