• Tidak ada hasil yang ditemukan

ناریا ینابغاب مولع

N/A
N/A
Protected

Academic year: 2024

Membagikan "ناریا ینابغاب مولع"

Copied!
14
0
0

Teks penuh

(1)

53 3

1401 ) 566 - 553

( Vol 53, No 3, Autumn 2022 (553-566)

DOI: 10.22059/ijhs.2021.328082.1958

* Corresponding author E-mail: [email protected]

:

) Calendula officinalis L.

(

#$ %& ' ) *+ , - 1

2

0 1 1 2 *

3

1 2 3 .

! " # $ % & $ '

:)* + ,) 12

/ 5 / 1400 - :3 45 + , 9

/ 9 / 1400 (

4

"

,

&

8 9 $

&

"

:

! :

"

; <

5

; =

>#"

?

@ ABC D E، D F <

8

! G HI!

J 3 K

"

L $ , K G"

, M N 8 * ) . O, ! P5 G " D $ QRC S" T

U 5 : ") VW 1

2 C

! &

: 1 2 C

&

"

$ 9C) VW " J B = < ( ?RC 200

400 B 8 " ( < " X 8 $

I!

" & G . 8 " #"

: " U . X * Y, ZR Q [ K< N ; * \ C

: !

2 C

@* K> &

39 36

;8 I^ _ [ C

! 22 21 ) C

36 29 < C

! <

" )>=

! I , 8

)`BE . 200 B

" X 8 <

@* K> @ J B = <

21 ! ;8 I^ _ [ C 19

@ C )

<

! <

G " G HI! . ! I , " )>=

a* ; ; * B J & ! X J & C ) <

@ b

@ & = 5

b

" '

\

& = 5

"

"

: "

: !

2

& C J B = <

200 B X 8

"

<

;C ?

8 G . U . " D $ QRC )>c d & ?

5 ) 6 ) B :

; *

; <

! <

) J &

.

Effect of different levels of biochar, hydrochar and salicylic acid on the growth of Calendula officinalis L.

Sara Khaleghi Gazik1, Vahid Reza Saffari2* and Shahrzad Daneshvar3

1, 2, 3. M.Sc. Graduated, Associate Professor and Ph. D. Student, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran

(Received: Aug. 03, 2021 - Accepted: Nov. 30, 2021) ABSTRACT

Recently use of biochar and hydrochar have been considered as a suitable method for improving soil fertility, fixing soil pollutant and store carbon inside the soil. In this study the effect of different soil improvers at 5 levels including biochar at 1 and 2% w/w, hydrochar at 1 and 2% w/w and no soil improver and also salicylic acid at 3 levels (0, 200 and 400 mg-L) were applied on marigold plants. This experiment was a factorial based on complitly randomized design. Results showed that biochar and hydrochar at 2% w/w level increased flower life at 39 and 36%, respectively, but decreased ion leakage 22 and 21%, and also malondialdehyde at 36 and 29%, respectively compared to control treatment. Salicylic acid at 200 mg-L concentration increased flower life at 21% and decreased ion leakage and malondialdehyde by 19% compared to control treatment. Highest ratios of shoot dry weight, root dry weight, total chlorophyll content, peroxidase and ascorbate peroxidase enzyme activity were obtained by application of biochar or hydrochar at 2% w/w and salicylic acid at 200 mg-L. These results indicated the positive role of soil improvers.

Keywords: Ion leakage, malondialdehyde, root dry weight, total chlorophyll.

(2)

&

3. 27 #- 8 9 ! : 1- ; 9<

' =- ;1 7

&>

3?

#+4 .

&@ 3. A A

B&!& . +1 7

A #.

C ? D A &@

;( 20 )

Kader et al.,

(2002

. 8

&-

&C,( 9 ! 3. E " 3. !F

3.

#+ . 7 G H 7 A 2 - 7 9 IJ H 7 . A

&@

;(

. 7 A

0 K-

;5?

@ :

F

&!

" &I5. ;1 7 L =- E

K+(

2 !F &- 7

. # MG A ;(

) Sohi et al.,2009

. (

7

&- 7 2 K+( N5- A .

0I>

9 F 3.

;( / 0 /& .

) Sun et al., 2014

.(

& . /

2 - . A 9,*,>

. O 3@ ;(

2 # A P

*- G #8

Q? R +G SIT 3+

*8 ='( U

V H CD(

3.

W 2

=- L A 1. .F

#$X- ;(

) Sohi et

al.,2009

DP #8 : 8 YP . H #. 2 ZP .(

#[

Q\

-

#@

G 05CG AO . ; 8#]

; ^ IG 3. UF

&I5. F 2 0

- #

) Glaser et al., 2002

.(

& . #. @ 3@ ;( 20 _

/

&>

0 ! U&/ 7 20

A - 500 3?

+G (

?&- # 2 0 &I5. `

E "

0 # 2 &!F A

) Namgay et al., 2010

.(

4 W 4G 2 0 3@

8 /& . 3.

#+1.

;4@

2 a >

b #"

`I(

: 8 N GF A +GF 0 1@

0 # )

Jia et al., 2019

.(

2 /& . #. @

; 2 H 0 #. +Ic- # $d> H-Z (

(Fathi et

al., 2021)

.

0 / - 2

? 0-

#@

D.

3@ ;(

7

#@

&.

G 2 0 e#

.F )

Hydrothermal carbonization

(

0 !&> 2 &> ;1 7 -

&

) Novak et al., 2014

A #. .(

2 &. e7O A#+ @ AB#G /& . 3. ;I1G / 0 0 !&>

-#? 0[ 2 &> ;1 7 7 f,4- 0 - g#f- . /& . 7 #+4 . 20 0 !&> / 0 -

0 .

) Hu et

al., 2010

:,. !F 2 - ; - 3. 3+1. F #. 2 ZP .(

#[ DP 7 #( ;( H - / 0 h -

0 K- Q\

0 . A #.

) Petrović et al., 2016

.(

7 - A

/ 0 -

&>

3.

: @ 7 A 3G ,*

A 7 IJ 9

CO2

N2O

)

Laird et al., 2010

( (#>

` H.#@

E "

)

Lehmann & Joseph, 2009

( 8 : ,*[ i A

E "

8 : 9,*,>

E "

8 : 8#]

;

^ I>

> @ G&

"

E

) Masto et al., 2013

2 (

#@

.

#. @

/ 0 2 H /

&!

& ! e 7

;1

&>

2 2

: 8 )

Paneque et al., 2019

.(

* 1 ! ( 0 (

&>

0 1@

D.

<

0 (

7

#>

I @ V

*D8

;(

3@

3.

&DP - 2 3I

&

&- G : G 5- N MD>

0 & G

)

Zhang et al., 2006

(.

* 1 ! ( 0 ( 7

&-

& !

^ A

^ DC ( 0D

2 N5-

;(

3@

. YP

j P 9 k!

2

#.

#.

:D>

A ' =- -

&

) Davis, 2004

? " #. @ .(

( 0 (

* 1 ! A

0D F#8 A

& G

& G

&? 3* ? 7

3G G7 0 #> 3+1.

3G7

& ^ +G UQ?

lKi m C/

n 4\

&+8 ;( Q #$ 2 0 ;P#( +D(

)

Aftab et al.,

(.2011

7 G0 #. 3" 9 * 1 ! ( 0 ( #. @

&T : 8 3. #oD-

^ 9 3J ( 3pD\ #'J ^&T 20D

0 2 #> 7 q#. r'( 9

) Alaey et al., 2011

.(

_ 20

;(

3@

#. @ 0 (

* 1 ! ( 2

"

`I(

: 8

; ! k8 N GF V . & (F 7 0 1@ #

q#.

0 )

Yildirim et al., 2008

.(

> #. #. @

2 0 e& !&! H / 2 * 1 ! ( 0 ( 0 4,. &I5.

(Hosseini et al., 2016)

.

34 5.

&.

3>

A 7

"

&G 2

@ D(

(Asteraceae)

. G e *P

Calendula officinalis L.

;(

" . C+(

2

*[

H 2

&i 7 2 A

0-

#+

3G

"

- 3G A

#-

@ A ;(

)

Borghei

et al., 2011

(.

A s8 2 #+1 &T 3. 5. 34

I(

#

;4@

3.

;*P tG

&D+- 1. A

u

3 i

@ A 3Ik?

A 7 #. @ 9 A

) Ghasemi ghahsareh et al., 2011

3 D 3. 3?&> . .(

"

E A

&G i

&D?

U

&D?

U

# v

&4@

#

0 P w >

&

&.

2 8 0J

&- Z[

i 0D+1 0 g 7

H W : K+(

2 7 - 2

!F Z[

i

& . /

0 /

# 2 . 0 ( (

* 1 !

;5?

&I5.

# * P K[

V 0 A 2 34 5.

&.

.

1

8

H W : 3.

&[

V 0*

G (

^ 1398

,*

3G =>

>

0 4G 2 4@

7 A C4G 2 0 5

(3)

.

#D

#@

- .

&-

; kJ

#z?

8 30 3?

!

&T

^ 57 3?

# J . K>

u 1754

#+- 7 r'(

0=- 2 - H . 0i 9J 18 0i

#c@

32

3?

+G (

# oG e .0

&T

;.

I1G ,*

3G 3.

&T - H CG

&T

^ F 7 - : 35 >

45 0[

&.

.

%#T `! J 9 &+@ 8 V &[ 3. : -7F wZ- @

. 8 f>

4

&+@ 8 .0 e oG # >

&- 9- ^

E " 20DD@ %Z[

RD r'(

9-

& . / 1 2

0[

G7 0 / 1 2 0[

7 G 0

) e0P

#f- g

& . / 0 / ( 9- e &+@ 8

3(

0 ) * 1 ! ( 0 ( r'(

200 400

-

* e#

" . &. (#+ ! #.

E 3.

@

#.

2 0 2

#

0*

3.

;I1G 0 1 2 0[

7 G . .

&

/

0 /

;( 3.

F 0- 2 7

&

;(

#>

3+1

&*,- }

# 0 . .

&

/ 7

&

;(

#>

3+1 5>

3

#.

A H

&MD-

&

;(

#>

3+1 j 7

&

4"

0 7

!

2

* -

#+- A

&IP 2 0 _

# ! F 3+1

) - A 300 3?

1*(

&

b

#. ( A 5>

3 .

&

/

,+G U

# 0 .

;5?

3 5>

0 /

&

;(

#>

3+1

3.

_

#@

D.

& ( 0

#>

-

^ - A 220

3?

& 1 *(

b 48 20 . 3.

0- V 12 (

;P

&>

Z@

#J 2 1 0G

? 0- i 9[

7 H :D@

- A 60 3?

& 1 *(

b F 4"

#@

2

jm(

3.

&[

V

&

F 2 0 . 9IJ 7 F 7 - :

&

0 / 3.

0 - 30

# e 300

* -

#+ !

F U

#' - 3+1 3.

0- V 10 3 J

# >

&"

2 jm(

3o +G H

&(

m(

& 1G h ? F A

0 2 j 7

&IP 7 [ 8

&-

? 0- . J - 0G 2

h ? F A j 7 4"

0 F 7 - : K+(

2

# 0 .

#.

( b =>

V oG e 0 2

&f"

d>

# $

& . / 0 /

#.

0 d>

# $ V K+- >

_ 0 2

;(

. SIT H V 7 F oG 3@

# 3.

- 2

#.

A

&>

0 !

& . / 0 /

#,+(

a -

&

1.

A 7

&P 9- . 7 0G 2 0 7

F

"

a -

# . 9IJ 7 +G

^ 4G n 0

;

#+ !

"

E 0G 7 2

# A 0 3@

- F 6 / 4

( 7 jD

#.

#+-

&.

@ " &DP 3. 3@

& . A

- 3+" D L(&+-

&

. jm(

n 4G A 34 5.

3*i#-

A 5

#.

3.

9"

0*

A

*[

) A

#'J 3G K>

u 25 ( +G

#+- ( +G

^ 2 0 0G 3.

&

3G A 3@

# 0*

n 4G

#J

#

;8 . - 2

j 7 +G

^ n 4G 9 P

&*=-

^ 0 (

(

* 1 ! T 3

#- 3*i . 8 3*[

7 - G 14 7

9 rI[

3.

&[

V

#m(

A

#.

oG e 0 . O 7 e

3.

#@

;(

3@

H !

&*=-

^ 0 ( (

* 1 !

#- 3*i 8

#.

2

&[

V

#

;8 . H H i

#(

A

€"

A

&-

&8

&!

B 27 0G

# A 0 >

3 D

&5]

9 A 0 0?

3.

0 V 3.

: @

; Q H 3@

#- 3*i

& P w - 3.

&DP A 5+G

0 2 H 2 D 3+"

-

&

.

!

"#

$

% &

'(

% ) *

# + (

&T

^ F 2 7 - :

#'J

# P ^&T

&+- L(

9

&- 0G 7 2

# A

;

#.

A

#J

#

;8

: -7F A 5+G 7

4"

34 ( 3J 0G 7 2

# A

0 . 27 0G ;5?

# 9 # P ^&T A 7 H !

7 . 0

# 0@

e 9 7 A

&.

3>

A F > ;=>

CG •G L(&> 9 A Q ;-ZP

7 j 0

0* -7 e >

• >

; 9 F #-W

# 0

&+- L(

K>

9‚

9 -7 H A

# P ^&T 20DD@ €,4- 3>&.

9

&.

.

, " ! $

&

%

* -

.

G& ;4G - n 4\ ` (F - :oD( A #.

3.

_

Kumar (2011)

0G 27

# A 0. .0 # H &MD-

# 7

&.

3>

5 3k'J

#.

q 1- A H@ ƒ &( 3* ( 3.

Q\ @ 3.

1 #'J

+G (

#+- j 3 5> h.#-

7

;1

&

A& ;1 A #.)

&

7 ! +i A

(q#. r'(

3!&!

2 #J U : -7F A

10 -

* !

#+

7 0k. .0 # 38 ‚ F 3. #' - UF

24

#+ ! ; 0 - ;P (

3G& G

) EC1

(

.

7 2 K+(

^0- #+- EC Metrhom

&4@ ;" ()

jm( .0 ;< #J (j <&(

3G& G V0- 3.

48 ;P (

#8 2 #J

0k.

F 7 3G& G -

A

(4)

& k- !

; 0 - .0 2 #J 2 C4 -7F

#+ !

) EC2

w 0o- (

27 0G

# A ;4G 0[

0 # 3I( =- # 7 3'. 7 G&

.

% EL = (EC1 / EC2) × 100

/ ) "

)/

1 / 0

# e 7

#>

& G 3G 10

* -

#+ !

&+(

80

0[

( 0 2 fP 2 i 9[

3.

0- V 5 3 J

(

#+G

& K B . 2700

#J 2 0 jm(

3

* -

#+ ! fP 2

#.

3+

Q?

U F

&T

^

&- a

8 / 646 2 / 663 470 G

&G

#+- 3.

@

#+ m(

&+8

#+-

&"

0G 2 0 . 9@ 9 8 #*@ .

K+(

2 7

=- ^&-#8 3I(

#.

`1i -

* e#

#.

#> 7 e#

0 _

) Lichtenthaler, 1987

.(

$ 0

$1

#.

A 27 0G

# A &! - ;M*\ A 0 0!F

_

Heath

& Packer (1968)

@ 3.

3+8#

0 Q?

U

&G

a&- ^&T 532

G

#+-&G 0G &"

2 7

&- " ` #‚

μM-1cm-1

155

#8

&-

^

# 7

# 2 K+(

0 .

A= €BC

3@

H

#8

&-

^ Q? A

U

&"

0G 2 0 2 ) ( €

#‚

`

"

&-

B

#P

&@

V

C

;M*\

j *m @

#.

`1i

* - O&-

;(

.

2 34

A #.

_ 7 H …> # :oD(

Bradford (1976)

K+(

2 .0 UQ? V0 3G& G

#+-&+8 #+ m( .

UV-VIS

^0-

Cary50

) (

;"

&4@

F

! (

a&- ^&T 595

20G &" #+-&G G 0

. H …> # ;M*\ .

D=D- 7 2 K+(

# 3I( =- 0G +(

0 .

, 1 5 6/

k8

; ! F G N

# 0 1@

7 . K+(

2 7 : - 2

&@

^ 0G 7 2

# A 0 . H _ 3

* -

#+ !

&*,- } :D@

i A 2860 -

#

#+ ! .

#8 K18 V

+ ( N 50

* -

&- O ) 7 ( pH=

20

# - !

#+

F U

W 1@

3G 75 / 0 0[

20

# -

#+ !

&@

^

"

€!

100

# -

#+ ! fP 2 F G

&.

. 8 : Q?

U 3.

9 !

0 1@

& (

&@

^ . 7 2 A 30

$ G 3 A 3.

0- V 3 3 J

&T

^

&- a 436 G

&G

#+- . C+(

2

#+-&+8 #+ m(

UV-VIS

^0-

Cary50

0G 7 2

# A

0 )

Putter, 1974

( . k8

; ! F G N

#.

`1i 0i

F G N 0 -

# H …>

9@

* -)

#

&- (e

&?

100

# -

#+ ! fP 2 3.)

;(

F 0- 2 7 _

#.

&8 (

=- 3I(

# 0 .

, 1 5 7+1

# 6/

#.

A 0G 27

# A k8

; ! N GF F

& ( . V 7 7 0 1@ #

_

Nakano & Asada (1981)

0 # 2 K+(

. H

_ 3 -

* !

#+

&*,- } :D@

i A 2680

-

# !

#+

.

#8 K18 V + ( N 50 -

*

&- O ) 5 / 7 ( pH=

100 -

# !

#+

F

& ( . V 5 / 0 -

*

&- O 100

-

# !

#+

EDTA

10 -

*

&- O 100 -

# !

#+

fP 2

F G 30 -

# !

#+

F U 1@

W 3G 15 -

*

&- O

&.

.

k8 !

; F

& ( . V

#

@ 1 0 7

#.

( b 1@

0 (

&

F

& ( . ( 0

@ : Q?

U

&T

^

&- a 290

G

&G

#+- . 7 2 A J

3 A 3.

0- V 3 J 3

0G 7 2

# A 0 .

3 o>

jG 2 . 2 K+(

7 e#G 8

SAS

3,1G) 1 / 9 ( - 31 - CG H . K+(

2 7

&-7F

H G r'(

5 0[

e oG 0

.

0

9#

:;

!

#

"

$

&

%

+G R o>

3 K[ jG V

&-

&8

&!

B H

W : 4G 3@

#$

V

*[

D- h.

0DD@ %Z[

2

"

E 0 (

#. * 1 ! (

>

-

&- V K[

'- 3k!

r'(

1 Dk- 0[

0 V #$

9. +-

F G

#.

K[ - >

V 3.

# \

&T 7

^

# P 9

r'(

1 0[

Dk-

&.

0?) ^ 1 .(

%

G+

R 3@ 4G .

: 8 #. @

;M*\

A D- h.

0DD@ %Z[

2

& .) E "

/ 0 / &- & (

0 (

* 1 ! (

& e 0G 4" 7 -

0G

8 4 .;

(5)

^ 0?

1 . R +G 3 o>

%Z[ h. D- jG

* 1 ! ( 0 ( E " 20DD@

K[ "#. #.

V

&-

&8

&!

B 34 5.

.

Table 1. Results of variance analysis effect of soil improver sources and salicylic acid on some morphological parameters of marigold.

Source of variation df Mean of squares

Shoot dry weight Root dry weight Flower diameter Flower life

Salicylic acid (SA) 2 33.70** 10.37** 500.48** 13.53**

Soil improver sources (SO) 4 25.21** 12.70** 517.89** 9.29**

SA× SO 8 1.28** 0.53** 24.13** 0.10ns

Error 30 0.49 0.14 9.65 0.61

C. V. (%) - 14.24 18.12 7.95 12.20

** * V K> ` >#> 3. :ns

Dk- r'(

5 1 Dk- V K> &IG 0[

.

*, **, ns: Significantly difference at the 5 and 1 of probability level\, and non-significantly difference, respectively.

3.

3G&

3@ A e 0G 4" 7 - H #+4 .

&

>

200 -

* e#

#.

#+ ! 0 (

@ . * 1 ! (

#.

& . / 0 / 2 0[

G7 3.

#>

` >

3.

- 38 / 9 79 / 8

# e 20 4-

0 3@

31 - . >

#K[ r'() 0 0 ( (

(

0P * 1 !

@ e

#.

D- . 0DD@ %Z[ h 2

E "

) 75 / 1

# e 8 ( : : . 7 5

#.

#.

A H

;K[

3.

: G 0D+ Q

9 ) 1

&I5. .(

K[

V 4 .

@

#.

& . / 0 / -

&>

3.

#+(

(

#+5.

2 3.

&- AQz- 3.

9 !

#]

; 8 I>

^

@

& >

G

. O A

& . / 0 / H Dp +

AO . 9 1G

F 05CG

; AQz- &- F

U

;I1G .

H +(

4G 0 2 3@

@

#.

& . /

#+1.

;4@

9

#Kk?

A F

#8 7 4"

2 3.

&T Dk- A 8 : . 3@

+G R H W :

&1

&.

) Vaughn et al., 2013

_ .(

20

;(

3@

2

;D.

&1DJ

^ . 8 /& . 3.

L =-

;4@

2 7 4"

2 : 8

;8 )

Guo et

al., 2018

.(

@

#.

&I5. `I( G * 1 ! ( 0 (

3@ 0 5. 34 2 4 V K[

. R +G H

2 A

Bayat et al.

) (2012

5. 34 2

.; ; . '-

%

#

#.

( H

;K[

0 20 4-

3@

. ;M*\ : 8

Z[ h. D-

" 20DD@ % E

0 ( &- &

(

* 1 !

w -& P 34 4" 7

8 : 3. .;8

&T 3

#+4 . H 34 4" 7

0 (

* 1 ! (

200

-

* e#

0 #. @ . #+ ! #.

/ 2 3. G7 0[

- 06 / 5

# e

#+ @ H

#K[ r'( F -

@ 0. * 1 ! ( 0 ( (0 )

#.

%Z[ h. D-

0DD@

2

"

E 3.

- 36 / 0 9 ) 0 20 4- e#

2 3+8 .(

A H W : . 3+8

&- d>

# $

& . /

#.

0 2 7 +D

@ O

>

. 8 : 7

#>

4"

0G e

&

34

&1

&.

)

Zhang et al.,

(2014

. H /

&!

& ! e 4G 3@ 0 2 7

;1

&>

2

2 0*

A >

0 2 . 0 / Ho!

Z‚ 8 U 8 : ;8

) et al., 2019 Paneque

.(

2 #@ _

&*=- 3@ 0G

^ 0 ( (

* 1 !

9 3"

#.

0 G 7

#oD- 3.

0 4 V K[ &I5.

) Alaey et al., 2011

.(

d>

* 1 ! ( 0 ( # $

V #$ . ^&*( 0 N MD>

W 2 A . q 0

^&*(

!&*( N 1 >

+" ( ;] Ki ^&*(

- 0 .

)

Vanaker et al., 2001

.(

'(

) ( #. . 2

3@ 0 # €,4- . #. @

/&

/ 0 Dp

H ^&*=- &- & .

( 0

! ( 1

* 8 `I(

: 3. ;I1G 9 #'J

>

3G& 3. .0G0 0 A

. 3@

#+4 H 9 #'J

>

200 -

* e#

#+ ! #.

( 0

! ( 1

* .

. #. @ /&

/ 0 2 G7 0[

>#> 3.

` 3.

- 92 / 57 54 / 49 -

*

#+-

#+ @ H -

> 9 #'J 0P

e ( g#f- 0

! ( 1

*

Z[ h. D-

% - 3. 20DD@

63 / 26 -

*

#+- 20 4-

0 9 ) 3 ;4@ #+1. 3. /& . - : 8 . .(

0 #+4 . 2 & G 0 b #" a > 2

) Habibi

et al., 2017

.(

@ H Dp

#.

0 ( (

* 1 ! . YP

8 :

#'J 9 34KD.

F

#8 0

) (Jabbarzadeh et al., 2009

.

(6)

& e 0G 4" 7 #. * 1 ! (0 ( E " 20DD@ %Z[ h. D- 9. +- #$ H CG -31 - .1 9 34

5.

.

Figure 1. Mean comparison interaction effect of soil improver sources and salicylic acid on shoot dry weight of marigold.

9 2 . - 31 - H CG

#$

9. +- D- h.

%Z[

20DD@

"

E 0 (

* 1 ! (

#.

7 4"

34 34 5.

.

Figure 2. Mean comparison interaction effect of soil improver sources and salicylic acid on root dry weight of marigold.

5.34 9 #'J #. * 1 !(0 ( E "20DD@ % Z[ h. D-9. +-#$ H CG -31 - .3 9

.

Figure 3. Mean comparison interaction effect of soil improver sources and salicylic acid on flower diameter of marigold.

gh

ef f

de

a

bc

fg

cde

def bcd

a

b

h

fg g

0 1 2 3 4 5 6 7 8 9 10

Control 200 400

Shoot dry weight (g)

Soil improver sources x salicylic acid (mg/L) Hydrochar 1% w/w Hydrochar 2% w/w Biochar 1% w/w Biochar 2% w/w Control

fg

bc cde de

a

b

g

cd def ef

b

bc

g

f g

0 1 2 3 4 5 6

Control 200 400

Root dry weight (g)

Soil improver sources x salicylic acid (mg/L) Hydrochar 1% w/w Hydrochar 2% w/w Biochar 1% w/w Biochar 2% w/w Control

ef

cd de

cd

a

bc ef

bc cd

c

a

b

f de ef

0 20 40 60 80

Control 200 400

Flower diameter (mm)

Soil improver sources x salicylic acid (mg/L) Hydrochar 1% w/w

Hydrochar 2% w/w Biochar 1% w/w Biochar 2% w/w Control

(7)

8 9

* )

+G R 4G . #. @ 3@

&

/ 0 / `I(

8 :

&T

^

# P 9 34 5.

> 3. ;I1G

0 3. 0G0 3G&

A 3@

. /&

/ 0 2 0[

G7 Dp H . /&

/ 0 1 G7 0[

3.

>#>

` 8 `I(

: 39 36 27 20 0[

A ^&T

> 3. ;I1G 9 # P 0

h. D- g#f- e0P)

[

%Z 0G0 (20DD@

9 ) -a

4 ( 0 ( ^&*=- .

G * 1 ! (

$d>

# 0G +Ic- 8

4

&T

^

# P 9

;I1G 3.

>

0

; 3.

&

3G A 3@

#. @ 200 400 -

* e#

#+ ! #.

( 0

! ( 1

*

# P ^&T 9

>#> 3.

` 0i 28 16 0[

> 3. ;I1G

0 ( g#f- e0P) 0

! ( 1

* (

8 : 0G 9 ) -b

4 ( F . 7 - 4 &MD- 3. G 0*

#.

( K[ #. /& . V #$

V 4 2 e oG &I- . 0 2 4G ;8#

3@

K[

V 4 3. &I- . &T

Dk- ;8 : 8 A

) Wang et al., 2018

#. @ .(

0* `I( D 1@&* 2 * 1 ! ( 0 (

7 j 20 > 0 #

24 0G 9 7

7 j 0 3 ! i

30 0* 3. 7

0D+8

) Davis, 2004

.(

! , "

$

&

%

* -

+G R o>

3 K[ jG V

8

&

!

&

B

& . H

W : 4G

#$ 3@

V

*[

D- h.

0DD@ %Z[

2

"

E

* 1 ! ( 0 (

#.

>

- K[

V

&- 3k! '- r'(

1 0[

Dk- 0 V #$

+- 9.

F G

#.

>

-

K[

V 3.

# \ G& ;4G 7 -

&!

A 0 0!F

r'(

1 0[

Dk-

&.

0?)

^ 2 .(

9 4 . ( a

- 31 - H CG h. D- #$

%Z[

" 20DD@

E

#.

9 # P 34 5.

- 31 - (b

H CG 0 ( #$

(

* 1 !

#.

# P 9 34 5.

.

Figure 4. a) Mean comparison effect of soil improver sources on flower life of marigold, b) Mean comparison effect of salicylic acid on flower life of marigold.

0?

^ 2 . R +G o>

3 jG D- h.

Z[

% 0DD@

2

"

E ( 0 (

* 1 !

#.

K[ "#.

V 8

&

&!

B

& .

34 5.

.

Table 2. Results of variance analysis effect of soil improver sources and salicylic acid on some physiological and biochemical parameters of marigold.

Source of variation df

Mean of squares Ion

leakage

Total chlorophyll

Malon

dialdehyde Protein Peroxidase activity

Ascorbate peroxidase activity Salicylic acid (SA) 2 174.64** 1.18** 499.45** 239.81** 26.24** 212.19**

Soil improver sources (SO) 4 301.17** 2.11** 320.09** 160.11** 28.96** 163.60**

SA× SO 8 2.66ns 0.10** 7.47ns 20.43** 0.58** 10.04**

Error 30 36.99 0.03 32.70 11.12 0.27 2.87

C. V. (%) - 14.67 12.82 14.07 16.77 12.43 14.34

** * Dk- V K> ` >#> 3. :ns

r'(

5 1 0[

&IG V K>

Dk- .

*, **, ns: Significantly difference at the 5 and 1% of probability level, and non-significantly difference, respectively.

b a

b a

c

0 1 2 3 4 5 6 7 8 9

Flower life (day)

Soil improver sources (w/w) (a)

c

a

b

0 1 2 3 4 5 6 7 8

0 200 400

Flower life (day)

Salicylic acid (mg/L)

(b)

(8)

.

+G R 4G . #. @ /&

/ 0 2

34 ;4G : @ `I( 5.

G&

& 3. 0 3G A

. 3@

O

#>

H - ;4G G&

>

0 ) 96 / 47

(0[

H

#>

H - . F

&

/ / 0

2 G7 0[

>#> 3.

` - 3.

33 / 37 50 / 37

0[

. . &.

H h. D- )*+,- %&'(

0DD@ %Z[

2

K>

V Dk- A 04G 20 4- )

9 -a

5 (.

#. @

( 0

! ( 1

* ;4G : @ `I(

G&

0

;M*\ .

200 400 -

*

# e

#+ ! #.

( 0

! ( 1

* 3.

>#>

` 19 10 ;4G 0[

G&

0 3. ;I1G

0G : @ )

9 -b

5 (.

2 4G 4 W T

0 3@

8 . /&

3.

#+1.

;4@

#C. +8F 2

# * P V K[

8 B&!&

H 2 3.

&T

Dk- A

&I5.

3@

. +G R H W : '-

; .

;

) Seleiman et al., 2019

@ .(

:

;4G

& G

2 .

@

#.

/& . -

&>

. d>

# $ F

8 :

; 05CG F

U

&- Qz- A

#- LI>

;1G

) Nemati et al., 2015

. (

- #MG 3.

0(

3@

0 (

! . * 1 ! (

A e G - A

+GF 1@

0 G C/ m lKi : 8 `I(

4\

n

# * P A

4\

n -

&

) Aftab et al., 2011

. (

_ 0 2

;(

3@

;M*\

1 / 0

* - 0 ( O&-

;4G - * 1 ! (

3?& 2 ; ! #+ !

;M*\ CG#8 150

0 #*@ O&- * - N 0(

4 4

;M*\ 0[

200 > O&- * - 32

- : @ 0[

0

) Stevens et al., 2006

(.

/ ) "

)/

R +G

#- LI>

. 27 0G

# 9 8 #*@ A +D(&+8 2 CG A

4G 9@

@

#.

D- h.

Z[

% 0DD@

2

"

E

&*=-

^ .

&

&- ( 0 ( ! 1

* 0G

8 4 -

#*@

8 9 9@

#.

q

; .

.

#+4 H -

#*@

8 9 9@

r'(

200 -

* e#

#+ ! #.

( 0 ( ! 1

* .

@

#.

.

&

/ / 0

2 0[

G7

>#> 3.

` - 3.

65 / 2 42 / 2

-

* e#

# #.

e

#> 7 q#.

#+ @ H - F

r'(

#K[

0 )

( ( 0 ( ! 1

* 0P e

#f- g

.

&

/ 0 / 3.

- 85 / 0 -

* e#

#.

# e

7

#>

#.

q 4- 0 2

# 0 ) 9 6 .(

31 - (b 5.34 q #. & ;4G G #. E " 20DD@ %Z[ h. D- #$ H CG -31 - (a. 5 9 -

H CG #$

0 (

(

#. G& ;4G #. * 1 ! q

34 5.

.

Figure 5. a) Mean comparison effect of soil improver sources on ion leakage of leaf of marigold, b. Mean comparison effect of salicylic acid on ion leakage of leaf of marigold.

ab

b b

b

a

0 10 20 30 40 50 60

Hydrochar 1% Hydrochar 2% Bioc har 1% Bioc har 2% Control

Ion leakage (%)

S oil improver sources (w/w)

a

b b

0 10 20 30 40 50

0 200 400

Ion leakage (%)

Salicylic acid (mg/L)

(a)

(b)

(9)

q #. 9@ 9 8 #*@ -#. * 1 ! ( 0 ( E "2 0DD@%Z[ h. D-9. +- #$ H CG -31 - .6 9 34

5.

.

Figure 6. Mean comparison interaction effect of soil improver sources and salicylic acid on leaf total chlorophyll content of marigold.

H W : 4G 2 0 3@

& . /

#+4 . H

d>

# $ 8 : CG 2 A

&+8 +D(

A

; .

8 :

&+=- A

#*@

8 9 .

@

#.

& . / 3.

! 9

>d

$

# +1- N Q? F #.

U D-

&

e - 0 . 3@

? 5- 8 #*@ 3G 0CG 7 9

;(

)

Abeer et al.,

.( 2015

H +G R . 3+8 A

Zulfiqar et al.

) 2019 (

2 7 +D

&CD (

& G e

&1

&.

.

^&*=-

2

*@

. Dk- &T 3. * 1 ! ( 0 ( A

&+=- A 8 9 8 #*@

: 3@

. +G R H

W '- :

; .

;

) Hayat et al., 2010

.(

0 (

(

* 1 ! 3.

9 !

& . +D(

#*@

9 8

#$

#=- E

#.

#]

; 8

&+8 +D(

A 7

#T S ! A k8

; ! F G N

& 1 . 8 : r'(

# * P

&+8 +D(

: G

) Gautam & Singh, 2009

. (

$ 0

$1

3+8 - 2 H 3@ 4G -

&!

A 0 0!F

8 . : . %&'(

&

/ / 0

: @ 0

- . 0D@

H >

0 / 1 G7 0[

0

K>

>

0G &?

3. ;

&

3G A 0 - 3@

H - 2

>

0 28 / 49 -

#

# e

#.

# e

#> 7

#.

q

>

/ 0 1 0[

G7 3.

- 80 / 45

- e# # . #> 7 e# #.

# q 4- 0 0 2 . 0 /

.

&

/ 2 0[

G7 G . /&

1 G7 0[

- &!

A 0 0!F

#.

q 0i 29 36 15 0[

> 3. ;I1G 0G : @ 0

) 9 -a

7 (.

( 0

! ( 1

* G

@ `I(

: - &! - A 0 0!F

#.

q 3G& 3. .0 A

;M*\ 3@

200 400

* - e#

#+ ! #.

(

! ( 0 1

* - -

&!

A 0 0!F 3.

#>

>

` 0i 19 14

@ 0 3. ;I1G 0[

:

0G . . H >

200 400

* -

#

#+ ! #. e (

0

! ( 1

* K>

V Dk- A

; 0G &?

) 9 -b

7 (.

# 0 1@

& ( 0 m ! A n 4\

4G ` (F 20D

!&*( r'(

- 0 . A &! - r'(

0 0!F

0 !&>

#8 H T 20 0D F

7 €" &DP 3.

- 3+8# #MG & > 0 1@ ` (F &

) Demiral &

Türkan, 2005

.(

b& 8 +D 7 2 /& . #. @

A &! - - : @ `I(

0 0!F 0

) Kumar et

al., 2019

. (

A &! - - : @

0 0!F q#.

#$

@

#.

0 ( (

* 1 ! 2

#"

38 G _

0 2

;(

) Yazici et al., 2007

.(

2 34

.

@

#.

D- )*+,- %&'(

h.

E " 20DD@ %Z[

. H Dp 8 0 ( &- & ^&*=- :

* 1 ! ( -

#. H …> #

q 2 34 5.

3. ;I1G >

0 0G

3. ; 4 8

3G&

3@ A .

#+4 H

…> # 0 - H

r'(

200

* -

# e

#+ ! #.

( 0

! ( 1

*

#. @ . .

&

/

2 0[

G7 3.

- 46 / 30

# # - e

#.

# e

efg

bc cde cde

a

b efg

bc

cde cde

a

b

fg

def fg

0 0.5 1 1.5 2 2.5 3

Control 200 400

Total chlorophyll (mg/g FW)

Soil improver sources x salicylic acid (mg/L)

Hydrochar 1% w/w Hydrochar 2% w/w Biochar 1% w/w Biochar 2% w/w Control

Referensi

Dokumen terkait

Mean comparison effect of different sources of acetate and ammonium carbonate and salinity stress and interaction effect of different sources of acetate and ammonium carbonate and

The results showed that with increasing sampling time, flower diameter, chlorophyll content, relative water content and relative fresh weight decreased and the activity of antioxidant

03, 2021 ABSTRACT In order to investigate the effect of different light spectra on growth and photosynthetic properties of four cultivars ‘Red’, ‘Black Dragon’, ‘Velvet Red’ and

B% O LL Leaf length LWLeaf width NLNumber of leaves per plant FW Fresh weight, DW Dry weight, Chl.a Chlorophyl a, Chl.b Chlorophyll b Chl.a + Chl.b Chlorophyll a+ Chlorophyll b,

05, 2019 ABSTRACT In this study, the effect of different concentrations of sodium chloride 0, 3, 6, 9 and 12 ds/m on growth characteristics and leaves sodium and chlorine content of

Evaluation of morphological characteristics, quantitative and qualitative yield of Echium amoenum as affected by plant density and application of chemical urea fertilizer and

Evaluation of nutritional status of kiwi vineyards in Guilan province using Compositional Nutrient Diagnosis CND method Ali Lahiji1*, Maijd Basirat2 and Alireza Fallah3 1, 3..

Evaluation of genetic diversity of Iranian coriander using molecular and phytochemical markers.. Thesis, Faculty of Agriculture, Tarbiat Modares