• Tidak ada hasil yang ditemukan

Method of Applied Math

N/A
N/A
Protected

Academic year: 2024

Membagikan "Method of Applied Math"

Copied!
17
0
0

Teks penuh

(1)

Lecture 1 Sujin Khomrutai – 1 / 17

Method of Applied Math

Lecture 7: Laplace Transform

Sujin Khomrutai, Ph.D.

(2)

Heaviside Functions

Heaviside EX 1.

EX 2.

EX 11.

Prop 5: t-shifting EX 3.

EX 4.

EX 5.

EX 6.

Prop 6: s-diff EX 7.

Prop 7: s-integrating EX 8.

Lecture 1 Sujin Khomrutai – 2 / 17

Definition. The Heaviside function (or unit step function ) is

H ( t ) =

( 0, t < 0 1, t > 0 It follows that

kH (t − a) =

( 0 t < a

k t > a

(3)

The Laplace Transform of kH ( t − a )

Heaviside EX 1.

EX 2.

EX 11.

Prop 5: t-shifting EX 3.

EX 4.

EX 5.

EX 6.

Prop 6: s-diff EX 7.

Prop 7: s-integrating EX 8.

Lecture 1 Sujin Khomrutai – 3 / 17

Theorem. Let a ≥ 0 and k be a real number. Then

L[kH (t − a)] = k e −as s

Proof. By definition, L[kH (t − a)] =

Z ∞

0

e −st kH (t − a) dt

= k

Z ∞

a

e −st dt

= k e −as

s .

(4)

Example 1

Heaviside EX 1.

EX 2.

EX 11.

Prop 5: t-shifting EX 3.

EX 4.

EX 5.

EX 6.

Prop 6: s-diff EX 7.

Prop 7: s-integrating EX 8.

Lecture 1 Sujin Khomrutai – 4 / 17

EX. Find the Laplace transform of the function

f (t) =

( 0 0 < t < 3

5 t > 3

(5)

Example 2

Heaviside EX 1.

EX 2.

EX 11.

Prop 5: t-shifting EX 3.

EX 4.

EX 5.

EX 6.

Prop 6: s-diff EX 7.

Prop 7: s-integrating EX 8.

Lecture 1 Sujin Khomrutai – 5 / 17

EX. Show that the function g(t) =

( 2 0 < t < 4 0 t > 4

can be expressed as g(t) = 2(H (t) − H (t − 4)). Then find the

Laplace transform L[g(t)].

(6)

Example 11

Heaviside EX 1.

EX 2.

EX 11.

Prop 5: t-shifting EX 3.

EX 4.

EX 5.

EX 6.

Prop 6: s-diff EX 7.

Prop 7: s-integrating EX 8.

Lecture 1 Sujin Khomrutai – 6 / 17

EX. Find the inverse Laplace transform of the function F (s) = e − 3 s

s .

(7)

Shift in t

Heaviside EX 1.

EX 2.

EX 11.

Prop 5: t-shifting EX 3.

EX 4.

EX 5.

EX 6.

Prop 6: s-diff EX 7.

Prop 7: s-integrating EX 8.

Lecture 1 Sujin Khomrutai – 7 / 17

Definition. Let f ( t ) be a function and a ≥ 0 be a real number.

The function

f (t − a)H (t − a)

is called the shifting of f ( t ) by a .

(8)

Shift in t

Heaviside EX 1.

EX 2.

EX 11.

Prop 5: t-shifting EX 3.

EX 4.

EX 5.

EX 6.

Prop 6: s-diff EX 7.

Prop 7: s-integrating EX 8.

Lecture 1 Sujin Khomrutai – 8 / 17

Theorem Let F ( s ) = L[ f ]. Then

L[f (t − a)H (t − a)] = e −as F (s).

Thus

L − 1 [e −as F (s)] = f (t − a)H (t − a)

(9)

Example 3

Heaviside EX 1.

EX 2.

EX 11.

Prop 5: t-shifting EX 3.

EX 4.

EX 5.

EX 6.

Prop 6: s-diff EX 7.

Prop 7: s-integrating EX 8.

Lecture 1 Sujin Khomrutai – 9 / 17

EX. Find the Laplace transform L h

sin

t − π 4

H

t − π 4

i

.

(10)

Shift in t

Heaviside EX 1.

EX 2.

EX 11.

Prop 5: t-shifting EX 3.

EX 4.

EX 5.

EX 6.

Prop 6: s-diff EX 7.

Prop 7: s-integrating EX 8.

Lecture 1 Sujin Khomrutai – 10 / 17

Theorem. We have

L[f (t)H (t − a)] = e −as L[f (t + a)].

(11)

Example 4

Heaviside EX 1.

EX 2.

EX 11.

Prop 5: t-shifting EX 3.

EX 4.

EX 5.

EX 6.

Prop 6: s-diff EX 7.

Prop 7: s-integrating EX 8.

Lecture 1 Sujin Khomrutai – 11 / 17

EX. Find the Laplace transform of the function

f (t) = tH (t − 3).

(12)

Example 5

Heaviside EX 1.

EX 2.

EX 11.

Prop 5: t-shifting EX 3.

EX 4.

EX 5.

EX 6.

Prop 6: s-diff EX 7.

Prop 7: s-integrating EX 8.

Lecture 1 Sujin Khomrutai – 12 / 17

EX. Find the inverse Laplace transform L − 1

e − 3 s s 2 + 4

.

(13)

Example 6

Heaviside EX 1.

EX 2.

EX 11.

Prop 5: t-shifting EX 3.

EX 4.

EX 5.

EX 6.

Prop 6: s-diff EX 7.

Prop 7: s-integrating EX 8.

Lecture 1 Sujin Khomrutai – 13 / 17

EX. Solve the IVP:

y ′′ + y = (t − 4)H (t − 4), y(0) = 0, y ′ (0) = 0.

(14)

Differentiation of Laplace Transform

Heaviside EX 1.

EX 2.

EX 11.

Prop 5: t-shifting EX 3.

EX 4.

EX 5.

EX 6.

Prop 6: s-diff EX 7.

Prop 7: s-integrating EX 8.

Lecture 1 Sujin Khomrutai – 14 / 17

Theorem. Let F ( s ) = L[ f ( t )]. Then

L [t n f (t)] = (−1) n F ( n ) (s), where n ∈ {0, 1, 2, . . .}.

Proof. Apply the integration by parts.

(15)

Example 7

Heaviside EX 1.

EX 2.

EX 11.

Prop 5: t-shifting EX 3.

EX 4.

EX 5.

EX 6.

Prop 6: s-diff EX 7.

Prop 7: s-integrating EX 8.

Lecture 1 Sujin Khomrutai – 15 / 17

EX. Find

L [t cos at] , L[t sin at]

(16)

Integrals of Laplace Transform

Heaviside EX 1.

EX 2.

EX 11.

Prop 5: t-shifting EX 3.

EX 4.

EX 5.

EX 6.

Prop 6: s-diff EX 7.

Prop 7: s-integrating EX 8.

Lecture 1 Sujin Khomrutai – 16 / 17

Theorem. Let F ( s ) = L[ f ( t )]. Then L

f (t) t

=

Z ∞

s

F ( x ) dx.

Thus

L − 1

Z ∞

s

F (x) dx

= f (t)

t .

(17)

Example 8

Heaviside EX 1.

EX 2.

EX 11.

Prop 5: t-shifting EX 3.

EX 4.

EX 5.

EX 6.

Prop 6: s-diff EX 7.

Prop 7: s-integrating EX 8.

Lecture 1 Sujin Khomrutai – 17 / 17

EX. Find L

1 − cos at t

.

Referensi

Dokumen terkait

In this section, we describe a convenient setting to develop integration by parts methods for Markov operators to reach differential equations on Laplace transforms for.. the

Step 1: If unit information is known, apply Formula 5.3 and calculate the unit contribution margin by subtracting the unit variable cost from the selling price?. This may or may

Replacing log (1 + z ) in (1) by (2), upon inverting the order of summation and integration, we thus observe that the essential part of this approach depends on whether or not we

Inverse Laplace Transform by Partial-Fraction Expansion When the Laplace transform solution of a differential equation is a rational function in s, it can be written as P s

THE Z-TRANSFORM  The Relationship of the Z-Transform to the Laplace Transform  Inverse Z-Transforms  Solution of Differential Equations  Stability of Discrete-Time Systems

Piecewise continuous means there are finitely many jump discontinuities in one period... Computation Introduction Forced vibration

Integration Part – 3 Integration by parts and Integration by partial fraction Shirin Sultana Lecturer Department of GED Daffodil International University... Exercise Evaluate the

The Laplace Transform 148 Poles, Zeroes, and the Region of convergence 149 Properties of the Laplace transform 150 The Discrete Fourier Transform and Fast Fourier Transform 153 The