• Tidak ada hasil yang ditemukan

CVv443S072016145.pdf

N/A
N/A
Protected

Academic year: 2025

Membagikan "CVv443S072016145.pdf"

Copied!
14
0
0

Teks penuh

(1)

TAP CHI KHDA HOC - BO •7/2I31B II I ^

DOI Mdi DJ\Y HOC NOI DUNG lAP nUNH mEO Hl/dNG hCH HOP mONG CHUONG miNH DAG TAG GIAO VIEN n N HOC

TiU CAC TCUdNG Di^l HOC DIA PHUONG

Nguyen Chi Trung Trudng Bgi hgc Supham Hd Ngi

Tdm tat: Dgy hgc tich hgp tgo ra sg kit hgp cd y nghia cdc ngi dimg trong ciing mdt mdn hgc hogc giira cdc mdn hgc. Nd giiip hoc sinh hiiu dugc su kit ndi nhung kien thuc, kindng cdc em dugc hgc trong nhd trudng vdi nhirng linh hudng cua ddi sdng Ihgc tien.

Viec nghien ciru ve dgy hgc tich hgp de cd cdch hieu dung vd vgn diing diing dang la mgt Irong nhicng mot vdn di cdp thiet ddi vdi gido due nude la. Bdi bdo ndy gidi thieu nhirng vdn di ca bdn cda dgy hgc tich hgp. vd de xudt mot sd ggi y ddi mdri dgy hgc ngi dung lap Irinh theo hudng tich hgp irong chuang Irinh ddo tgo gido viin Tin hgc a cdc trudng dgi hoc.

Tir khda: Chuang Irinh lich hgp. lich hgp da mdn, lich hgp lien mdn, tich hgp day dii.

I. GlOfI THIEU

Tu nhiing nam 1920, y tudng ket hgp hai hay mdt sd mdn hge da duge iing hd bdi cac nha gido dye danh tieng nhu John Dewey (1938), Ralph Tyler (1949), va Benjamin Bloom (1956). Trong sy ket hgp nay, eac mdn hgc deu ddng vai trd quan trgng ngang nhau khi cimg phy thugc vao cac mdi quan he chung cua xa hgi. Nhan manh dieu nay, John Dewey (1938) da viet; ''''Chung la khdng cd mot the gidi gdm mot chuoi cdc Idng ddnh cho tdt cd cdc ITnh vuc, mot ldng ddnh cho Todn hgc, mgt tdng ddnh cho Vdt iy. mot ldng cho Lich sie.... Trong do. tdi cd cdc nghien cicu cua mgi linh vuc deu phdi bdt ngudn tie cdc moi quan he trong mgi thi gidi chung. Ralph Tyler (1949) da md ta viec ket ndi ngi dung thugc cae mdn hgc the hien "wo; quan hii ngang hdng cua cdc kiin thirc. kT ndng Irong todn bg chuang trinh hoc'". Quan diem nay dugc thdm nhudn qua chinh cdng viec ciia ong trong su6t tam nam day hgc d 30 trudng pho thong ca sd vao nhu:ng nam 1930. Benjamin Bloom (1956) da khuyen khich cac chuang trinh giang day nen dugc tich hgp theo md hinh "xau chudi" (threaded integeration) de thuc day cac ket ndi giua cac mon hgc.

Nhanbai ngay 30.05,2016; giii phan bien va duyet dang ngay 20 08 2016 Lien he tac gia: Nguyen Chi Chung; Email: trungnc@hnue edu.vn

(2)

146 I TWtJClNB OAI H O C THlIl B D H A N P I

Cae quan dilm v l day hge tich hgp td nam 2000 ttd lai day cd t h l tham khdo them ttong luan an tiln sT cua Kevin Costley (2015). Cac nghidn cdu da chi ra ring: Hgc sinh dugc d£iy hge tdt han nhd vice td chdc 1^ ede ndi dung day hgc. Cdc ngi dung d^y hgc nay khdng phdi dugc xdy dyng tu cdc mdn hgc ddc Idp md tii cdc chd d l bao quat xuit phdt tu mdi lien kit v l mat ti thuyit gida cdc mdn hgc. Lgi ich Idn nhit eua day hgc tt'ch hgp la:

Nd tgo ra sy kit hgp cd y nghTa ede ndi dung trong cung mdt mdn hge hoac gHJa eac mdn hgc, giup hgc sinh hilu dugc sy kit noi giua nhdng gi cae em dugc hgc ttong nha ttudng vdi nhung hoat ddng ttong cudc song hang ngay.

Cling vdi sy phdt ttien va ddi mdi giao due cda nhieu nude tten the gidi, giao due nude ta dang chuyen tu day hgc ditih hudng ngi dung sang day hgc djnh hudng nang lyc. Cac chu de cua chuang yinh tich hgp se ket ndi li thuyet eua nhieu ITnh vyc, phan dnh sdt vdi thyc te cudc sdng bSn ngoai nhd trudng, gidp hgc sinh gidi quygt dugc cac tinh huong ciia thyc tien. Do dd, day hgc tich hgp Id mdt bien phap hieu qua d l phdt triln ndng lye cho hgc sinh. De thyc hien day hge tich hgp thdnh cdng, trudc hit gido vien phai hilu duge khdi niem chuang ttinh tich hgp, cae muc muc do, va cac each tilp can day hgc tieh hgp. Bai bao sg gidi thieu cac ndi dung nay vd de xuat mdt sd ggi ^ ddi mdi day hge lap trinh theo hudng tich hgp ttong chuong ttinh ddo tao gido vien Tin hgc d cdc trudng dai hge, dap ung nhu ciu ddi mdi giao dye hien nay.

2. N O I D U N G

2.1. M o t so v a n de c o b a n c u a d a y hoc tich hgrp a) Khai niem chu-ong trinh tich hgp

Thudt ngd "day hgc tieh hgp" ma chung ta dang su dung dugc hilu theo nghta la

"chuang trinh tich hgp" (integrated curriculum), ''khda hgc tich hgp" (integrated course) hoac "hgc tich hgp" hay "nghien euu tich hgp" (integrated study). Cd nhilu nghien euu khac nhau tren thl gidi v l day hgc tich hgp, trong dd cac nghien cuu dang chu y phdi kl den la cac cdng trinh cua Cater Good (1973), Jacobs Heidi (1989), Fogarty Robin (1991), va Susan Drake (2004). Cd the su dung ca hai khdi niem v l chuang trinh tich hgp cua Cater Good va Jacobs Heidi, cy thl nhu sau:

Djnh nghia cua Cater Good (\973):"Chuang trinh lich hgp Id mdi Id chuc chuang Irinh gdm mot true cdc mgch kiin ihicc cua cdc mdn hgc nhdm tap trung vdo cdc vdn di cua ddi sdng xd hoi hodc cdc iTnh vuc hgc tap tren dien rgng. Trong chuang trinh ndy cdc mgch kiin ihuc dugc Id chuc ciing vm nhau sao cho chung lao ra mgt su ket hgp cd v n^/jw" (Cater Good. 1973).

(3)

2 ^ C H I K H O A H O C - S D ^/ZCJIB '•" • ^' ![ *^'

"Sir kit hgp cd y nghTa" d.ddy dugc Kysilka Mareella (1998) giai thich nhu sau:

Nhihig van d l cda thyc tiln khdng phdi la nhihig ndi dung rieng re dugc day ddc Igp trong tiJmg mdn hgc, ma la nhdng ndi dung dugc tich hgp tu nhilu kiln thdc cda cdc mdn hgc va chung cd the ung dyng ttong cac hoat ddng cua ddi song thyc tiln.

Dinh nghia cda Jacobs Heidi (1989): "Mgt chuang trinh tich hgp lien mon la mot cdch nhin vi tri thuc vd cdch tiip can chuang trinh dgy hgc. Cdch nhin vd each tiep cgn ndy dga tren cdc phtrang phdp vd cdch ihii^c truyen dgt li thuyet cua mgt sd mon hgc, nham muc dich kiim tra, nghiin ciru mgt chu di trung tdm (theme), mgt vdn de cdn thong nhdt (issue), mgt bdi todn cdn gidi quyit (problem), mgt chu de cdn qicyel dinh (topic), hogc mgt kinh nghiem gidng dgy (experience) ".

Dinh nghta cua Jacobs Heidi nhdn manh ring chuang trinh tich hgp phai cd cac chu d l chung do cdc gido vien cung nhau thda hiep vd thiit kg. N I U cdc mdn hgc dugc day rieng re, giao vign phdi hudng vao cdc chu dg trung tam nay theo timg thdi diem nhu da dugc thda thudn tu trudc. Ndi hdm cua khdi niem "tieh hgp" da duge mdt sd nha nghien cuu quan tdm vd tim each giai thich. Vi du, Sandra & Melissa (1997) trong "Logic cua hgc tap tich hgp" da gidi thich va phdn biet ba kieu md hinh tich hgp: Tich hgp lien mdn (Interdisciplinary Model), ty tieh hgp (Integrated Model) vd md hinh cd tinh tieh hgp (Integrative Model). Trong cac nghign cuu sau ndy, thudt ngir "tich hgp" dugc giai thich ngan ggn vd don gidn ban. Vi dy, trong khi Susan Drake (2004) dung tu unification {hop nhdt) de dien td su tieh hgp day du eua hai mdn hgc, thi Abayomi Aroso (2013) dimg hai tu interconneetedness {ket noi ngi tgi) vd interrelationships {quan he ngi tgi) dt md ta mdi lien quan gida hai ndi dung li thuygt cd the tich hgp dugc vdi nhau.

b) Cac loai chuong trinh tich hgp va muc do tich hgp

Theo Susan Drake (2004), chuang trinh tich hgp la mdt chu de dugc thao luan nhieu tu ddu thg ki 20, va sau hon mgt the ki, cac nha nghien cuu da dua ra ba kieu chuang trinh tich hgp CO ban. Vao nam 1935, ba kieu day hgc tich hgp ca ban nay da dugc Hdi ddng Qudc gia Giao vien tieng Anh (NCTE - National Council of Teachers of English) md ta nhu cdc muc do tich hgp giua cac mdn hgc, cy the nhu sau:

• "Tuang lien" (Tuang thich vd lien quan) (Correlation): 6 muc tuong lien thdp, giao vien de cap den tai lieu lien quan den mdn hgc khac khi day mdn hgc ciia minh. C) muc tuang lien cao, giao vien co ke hoach xay dyng tai lieu hudng den mdt mdn hgc khac, nham gidi thich cac vdn de hay chu de xac dinh ciia mdn hgc khac dd.

• Hda trgn (Fusion): 6 muc hda trgn. li thuyit cua hai mon hgc dugc kit hgp (combination) vdi nhau va dugc giang day bdi mgt giao vien hoac ca hai giao vien.

(4)

mi

TRUcrNB BAI HDC THLI B D H A N ^

Tich hgp (Integration): Ci mdc tich hgp, kinh nghiem giang day cda cae giao vidn va li thuyit cua hai hay mgt s6 mdn hgc dugc hgp nhit (unification) vdi nhau va tao thanh mdt mdn hgc mdi (ggi la mdn hgc tich hgp).

Cdc muc dg "tuang lign" va "hda ttgn" trgn ddy dugc Gordon Vars (2000) sd dyng td ndm 1991 dl dua ra khai ni$m "chuong ttinh cot ldi"(core curriculum). Chuong ttinh cot ldi eua dng da dugc vdn dung ttong nhieu ttudng pho thdng d Mt va d nhieu nude khac. Vi dy, tai New Zealand, Philip Jellyman (2015) dd lya chgn "chuong ttinh e6t loi" la md hmh dau tien trong sau md hinh dgy hgc tich hgp cho cdc trudng trung hgc co sd.

c) Cac each tiep can day hgc tich hgp

Cdc mdc do tich hgp ttgn day vdn chua ldm cho cdc nha nghien cuu hdi ldng, vi nd dudng nhu khdng du dl hilu dl cdc gido vien cd thl van dyng. Dya tten cdc muc do tich nay, Jacobs Heidi (1989) trong ''Khoa hgc tich hgp: Thiit ke vd thuc hien", da dl xuit eac cdch tilp can day hgc tich hgp. Mdi each tilp can dgy hgc tich hgp dudi ddy cua tac gia dugc xem nhu mdt each lya chgn de thyc hien.

Tich hop da mdn (Multidisciplinary Integration)

Giao vign cung nhau td chuc cdc chudn li thuyit cua mdn hgc cua minh xung quanh mgt chu de chung (theme).

Cac mdn vdn dugc day rieng nhung hudng vg chu de chung.

Mue do va ndi dung cua cdc mdn hgc ddng gdp vao chu de chung cd the khac nhau va chung se quygt dinh hieu qud cua viec tich hgp.

Tich hgp lien mon (Interdisciplinary Integration)

Cac giao vien ciing xay dyng mgt chii di mdi dya tren ngi dung lien mdn (acrossdisciplines). Ngi dung lien mdn la ndi dung cua mdn hgc nay dugc xem xet tu gdc do cua mdn hgc khac.

Cdc phdn chung dugc gSn kit vdi nhau dh nhdn manh cac kt nang va li thuyet lien mdn.

Chu de chung {chu de mdi) nen dugc day rieng. Dilu nay se tot hom khi nd dugc day lan trong cac mdn khac.

Nhung chii y la nd khong thay the dugc cdc mdn.

(5)

TAP CHI KHDA H O C - 3 6 V / g m S II '^^

Tich hop ^ du (Transdiscipliitary Integration)

• Cdc gido viSn cung xay dyng mdt chu di mdi dya ygn nhu cdu vd mdi quan tdm cua hge sinh {khdng phu thugc vdo mon ndo).

Hgc smh dugc phdt ttien kt ndng sdng thdng qua viec dp dyng kt nang lign mdn vd don mdn trong boi cdnh thyc tien cua cudc sdng.

• Cd hai each dg thyc hien each tiep can nay Id:

Dgy hgc dua tren du dn vd Dgy hgc theo chu de tich hgp.

Ba each tigp cgn eua Jacobs Heidi (1989) da phdn dnh ba loai chuong yinh tich hgp (hodc cdc muc do tich hgp) cda NCTE (1935). Tuy nhign cdch md ta ciia Jacobs Heidi cy thg vd dg higu hon. Kysilka Mareella (1998) da nghien cuu kt ba cdch tigp can ndy cua Jacobs Heidi vade nghi khi thyc hien each thu hai, gido vign nen day chu de chung nhu mgt chu dg mdi.Ngoai ra, Kysilka Mareella ggi cdch tiep can thu ba Id "Tfch hgp ddy du"

(Complete Integration) va nhan mgnh hgc sinh la ngudi quyet djnh chu del khda hge. Ddc biet, qua mdt thdi gian thu nghiem va van dyng cdc cdch tiep can day hgc tich hgp, Jordan Catapano (2010) da rut ra ba each thyc hien day hge tieh hgp thanh cdng dd Id:

- Tir tich hgp (Do-it-yourself Integration): Giao vien ty mang cac "nguyen lieu" cua mdn hgc khdc vdo trong bai giang cua mdn hgc minh. Ddy chinh Id tigp can tich hgp lien mdn muc nhe. Vi du, trong bai kigm tra Lich su vg nhiing tin dd Thanh giao Anh (hdnh huong den MT 1960 va thdnh lap kliu kieu ddn Plymouth d bang Massachuset) cd yeu cau phai dgc vd phan tich mdt thi ca lien quan den eugc hanh huong cua hg.

- Phoi hgp theo cap (Team-Teach-It Integration): Thay vi tich hgp noi mdn, giao vien hgp tac vdi mdt giao vien khae de xdy dyng mgt chu de hgac mdt nhdm kt nang ma hgc sinh can dat dugc va hg cung day chung mdt Idp vdi sy thoa thuan ve ngudi day (mgt hoac ca hai). Ban chat each thyc hien nay la lich hgp lien mdn. Vi du, trong gid hgc Lich su, hgc sinh dugc gidi thieu ve Thanh giao (Puritan) - mgt ton giao d MT; trong gid hgc tieng Anh. hgc sinh dugc yeu cau dgc ve nhirng ngudn tu lieu (bang tieng Anh) lien quan den Thanh giao. Trong phuang phap nay, mdn tilng Anh va mdn Lich su da cd "phan chung hgp nhat".

- Lap mgt nhdm nhieu GV tich hop (Multidiscipline Integration): Mgt nhom giao vien (hoac chuyen gia) tilng Anh, Lich su, Toan, Khoa hgc, Ngdn ngu, thdm chi ca GV Vat li ciing tao ra mgt khda hgc tich hgp. Khda hgc nay co thl thyc hien dudi dang mdt du an hgc tap, thyc hien mgt thdi gian nhdt dinh hoac keo dai trong ca mot hoac hai hoc ki.

Day chinh Id each tiep can tich hgp da mdn.

(6)

isa

g

T R U a N B BAI HOC T H G BO HA NCII

d) Cac md hinh day hgc tich hgp

Cung nhu Jacobs Heidi (1989), cac nhd nghign cdu khdc nd lyc giup eac giao vidn hilu va thyc hien dugc viec day hgc tieh hgp. Fogarty Robin (1991) ttong cudn sach

"Hudng tdi trudng hgc: Ldm the ndo de tich hgp chuang trinh" dd dua ra mudi md hinh chuong trinh tieh hgp. Nhimg md hinh nay giai thich cac mdc dg khdc nhau eua day hge U'ch hgp va ggi y cho gido vien nhihig cdch khde nhau ttong viec xdy dyng cdc chd de tieh hgp ttong cung mdt mdn hgc hoac giihi cdc mdn hgc. Cac md hinh ndy duge gidi thieu tdm tdt nhu sau:

(1) Phdn manh (Defragmented)

o o o

Moi hinh trdn bieu thi mdt mdn hge dugc day ddc lap (hodc bigu thi cac ndi dung ttong cung mdt mdn hgc dugc dgy dgc lap). Day ( ^ 1 la md hinh "tich hgp yeu nhdt" vi thyc chit nd la md hinh day hgc

don mdn truyen thdng.

(2) Kit ndi (Connected)

o o o

Hai hinh trdn nhd bgn trong bigu thi hai ndi dung cua mdt mdn hgc dugc kit ndi vdi nhau va tao thanh mdt chu d l chung (hinh trdn bgn ngoai). Ba hinh trdn cdn lai bilu thi cae mdn hgc khac (hoac cdc ndi dung khac) dugc gidng day dgc lap. Day la md hinh tich hgp ngi

(3) Ldng ghep (Nested)

Cac hinh trdn long nhau bieu thi li thuyit cua cdc mdn hgc duge day long ghep. Myc tieu cua md hinh nay Id tap trung phat triln cho hgc sinh mdt hoac mdt sd kt nang nhdt djnh, vi dy nhu kt ndng xa hgi, kt nang tu duy.

(4) Sdp xep (Sequenced)

Thu ty cac hinh trdn the hien cac chu d l kiln thuc cua tuno nidn hgc dugc sdp xep lai sao cho kiln thuc dugc hgc trudc cua mdn nay phuc vu kien thuc dugc hgc sau ciia mdn khac.

(7)

TAP CHf KHDA HOC - BO 7/201B. ' - . '• II IS1 (5) Chiase'(Shared)

GD

Hai hmh trdn giao nhau bilu thj cae li thuyet cda hai mdn hge tao thanh doi tdc cda nhau ("partner") va trd thdnh mdt chd dl chung eua hai mdn hge.

(6) Mgng nh$n (Webbed)

Hmh vudng bilu thj mdt chO dl chung duge hinh thdnh dya yen cdc Iy thuyit cda nhieu mdn hge. Vdi md hinh nay, cdc mdn hgc dugc day rieng nhung httdng din chd dl chung. Md hinh nay till hien each tilp cdn d^ hgc da mon.

(7) Xdu chudi (Threaded)

Mdt dudng xuygn qua cdc hinh ttdn bilu thi mdt kt nang ndo dd cin phdt triln cho hgc sinh thdng qua mgt so mdn hgc. Md hinh nay nhdn mgnh nhdng ndi dung dugc chgn tu cdc mdn hgc chi Id phuang tign dl dgt din kt ndng cin phat ttiln cho HS, vi dy nhu kT nang tu duy, kT nang xa hdi, tti thdng minh toan dien.

(8) Tich hgp (Integrated)

Phdn giao cua tat cd cdc hitih ttdn bilu thi myc tieu duge im tien cao nhdt (phdt trien kT nang, phdm chat, nang lyc) ma tdt ca cdc mdn hgc dgu phdi hudng dgn. Md hinh ndy ddi hdi cac giao vien phdi cung nhau ban bac dl th6ng nhdt muc tieu uu tien hoac dua ra mdt chu dl chung can hudng din.

(9) Nhung (Immersed)

Hinh trdn bao ngoai bieu thi mdt chu dl cdn tim hilu. Cdc hinh trdn nhd bgn Uong bigu thi li thuyet cua cdc ITnh vyc (mdn hgc) md chung Id cdc khia canh idiac nhau cua chu dg cdn tim hieu, nghign cdu.

(10) Mgng (Network)

Trong md hinh mang, ngudi hgc tryc tigp hudng din qui trinh tich hgp thdng qua viec chgn mdt mang ludi cae chuygn gia vd ngudn hgc lieu.

(8)

152 II TRLTdNB BAI HOC THlIl BO HANgl^

Kathy Lake (1994) da giai thich sy khdc nhau cua cac md hinh tren la v l mdc dd tieh hgp, vd mdc do tieh hgp tdng dan theo "sy djch chuyin". Bdt diu la each hai giao vign dgy cung mgt chu de d hai mdn khdc nhau (muc 1) r l i djch chuyin sang each hg cung thiet ke cac bdi hgc rigng (thematic units) (mdc 2), rdi sang each hg cdng thiit k l khda hgc lien mdn (interdiciplmarry courses) (mdc 3), vd cu6i cung Id each hg cung xay dyng mgt chuong trinh tich hgp diy dd (fiilly integrated curriculum) (mdc 4).

Cdc vin d l CO bdn v l chuong hinh tich hgp trdn ddygiup cdc nha trudng hieu rd ban chat va cdc mdc dd cOa day hgc tich hgp. Tuy nhign, khi lua chgn vd v$n dyng mgt each tilp can tieh hgp hay mdt md hinh tich hgp nao do, cae nha hoach djnh, thigt ke chuong ttinh cac mdn hgc va eac gido vign cdn phdi can cd vdo cac ylu to lign quan den chuong trinh giao dye ciia qudc gia va dac diem, digu kien thyc tg cda dia phuong. P h i n tilp theo dudi ddy cua bdi bdo sg trinh bdy mgt sd ggi y v l dgy hgc lap trinh theo hudng tich hgp.

2.2. M o t so got y ve d a y hgc l a p t r i n h t h e o h i r d n g tich h o p

Myc tigu cua day hgc lap trinh theo hudng tieh hgp d trudng phd thdng la giup hgc sinh hieu va ghi nhd duge each gidi quylt cac vdn d l cy the cua cdc mdn hgc duge tich hgp vdi lap trinh; giup hgc sinh thdy dugc thdy duge y nghTa cua lap trinh vd hung thu vdi cdc chu d l kign thuc cua cac mdn hgc, trong do cd lap trinh. Han nira, dgy hgc lap trinh theo hudng tich hgp cdn nhdm gdp phdn phat trign cho hgc sinh nang lyc gidi quygt van dya tren may tinh. De dat duge cac myc tieu ndy cdc gido vien can chii y mgt sd van de sau:

a) L y a chgn phu hgp cdc md hinh va cac each tiep can c h u a n g trinh tich hop Hdu het cae each tiep can va cac md hinh chuang trinh tich hgp deu cd thl van dung de day hgc lap trinh theo hudng tieh hgp vdi mdt sd ndi dung cua cac mdn khoa hgc tu nhien nhu Vat li, Hda hgc, va Toan hgc. Giao vien nen tham khdo vd van dyng hai each tiep can lich hgp lien mdn da dugc trien khai thanh cdng cua Jordan Catapano (2010), cy the nhu sau:

- Tu-tich hgp (Do-it-yourself Integration): Gido vien Tin hgc lya chgn cae bai todn cua cac mon hgc khac co thl lap trinh de gidi quylt va dua vao trong bai giang v l lap trinh cua minh. De cd the ty lich hgp, giao vien khdng nhung phai hieu dugc each giai lung bai toan ctia mdn hgc tuong ung ma cdn phdi bilt chuyen cac each giai cu thl nay v l mdt phuong phap giai tdng quat cho mdt Idp bai loan (hodc cho mdt dang bai toan) va cuna cap tri ihuc nay cho hgc sinh dudi dang mgt thudt loan, de cd the lap trinh giai quylt trgn may tinh.

- Phoi hgp theo cap (Team-Teach-It Integration): Thay vi tich hgp cac mach kiln thuc khac nhau trong mon Tin hgc (tich hgp ndi mdn), giao vien Tin hgc hgp tac v6i m*t

(9)

TAP CHi KHOA HOC - SO V/ZOIB 153 gido vign bd mdn khdc khdc de xdy dyng mdt chd d l hodc mdt nhdm kT nang ma HS cdn dgt duge va hg cung dgy chung mdt Idp vdi sy thda thudn v l ngudi day. Dieu cin dac biet Itm y d day Id: Khi dua ra ndi dung d l tich hgp, giao vien cua mdn hgc nay cin phdi dung d gdc do cda mdn hgc kia. Vi dy, gido vign Hda hgc can hilu rdng mudn lap ttinh dugc thi phdi cung cdp cdc cdng thdc hodc cac qui tdc ma cd thl tinh todn dugc bdi cdc thiet bi ty ddng; ngugc lgi, gido vign Tin hgc cdn phdi hilu rdng mudn gidi dugc dgng bdi todn dd thi phdi cung cdp nhihig moi lien he, phy thugc cd tinh qui ludt gida cac ddi tugng cua Hda hgc. Qua yinh dua ra ndi dung tich hgp ed sy nhin nhgn qua lgi giua hai mdn hgc nhu the dugc ggi Id hinh thdnh "tryc cdc mgch kien thdc" (xem vi dy minh hga d myc tiep theo).

Cdch tilp can thd ba cua Jordan Catapano (2010) (tich hgp da mdn) chua ngn van dyng ngay tgi thdi dilm hien nay vi nd ed thl it tinh khd thi ddi vdi thyc te chuang yinh gido dye phd thdng eua Viet Nam. Cdc chuyen gia cda cac linh vyc - mdn hgc chae chdc se cd nhieu tranh ludn trudc khi thing nhdt vd dua ra duge cac chu dg tich hgp da mdn.

b) Nhirng ngi dung cua cac mdn hgc cd the tich hgp vdi l^p trinh

Lap trinh Id hogt ddng chuyin giao thudt todn cho may tinh hieu va thyc hien. Do dd, bit ki van dg nao (trong Tin hgc cimg nhu trong eac mdn hge khac) cd thg xdy dyng dugc thudt todn dg gidi quygt thi deu cd thg lap trinh vd thyc hien trgn mdy tinh. Tu ddy suy ra nhung logi bai toan sau ddy cd the tich hgp yong ngi dung dgy hgc lap yinh:

- Cdc bai todn lien quan din tinh todn theo cdng thue;

- Cac bdi todn cd cdc budc gidi xdc dinh (cd thudt todn);

- Cdc bdi todn cd ldi gidi tya thudt todn, cd thg chuygn ve thudt todn.

Nhung logi bdi todn tren xudt hien trong nhieu bai hge cua cdc mdn nhu Hda hgc, Vdt li, vd Todn hgc. Do do, lap trinh Id mdt ndi dung cua mdn Tin hge cd rdt nhilu ca hdi thuan Igi dg thiet ke chu de day hgc dugc tich hgp vdi nhigu ndi dung cua cac mdn khoa hgc ty nhien.Vi dy, cdu tnic tuan ty ttong lap trinh cd thg gidi quygt dugc nhilu logi bai tap cua mon Hda hgc (Idp 8, hgc ki 1), nhu bai tap ve chuyen doi giua moi, khdi lugng, vd thg tich eua cdc chat; bdi tap ve lap cdng thuc hda hge; bdi tap ve tinh todn theo cdng thuc hda hgc, bdi tap ve tinh toan theo phuang trinh hda hge.

c) Cac vi du day hgc Idp trinh theo hudng tich h ^ Vi du 1: Tich hgp Tin hgc - Hda hgc

Chu de chung: Tinh toan ty ddng theo cdng thuc d l chuyin dii giua moi, khdi lugng vd the tich cua chdt.

True cdc mgch kiin thicc:

Hda hgc: Tinh toan mgt ylu td (so moi, khoi lugng, thl tich) ciia mgt chdt A khi biet cdc ylu td cdn lai theo 2 cdng thuc: UA = mj^lU^ va VA = 22.4*nA; Trong dd nA la sd moi,

(10)

TRLfflNG BAI HOC T H D BO HA NO' mA la khSi lugng ch^t A (g); MA la kh6i luong moi (hay nguySn to khoi) cOa chat A; 22.4 la thi tich cua ni6t moi cac chat khi 6 dktc (0°C vh 1 atm).

Tin hoc: Clu true tu&l tu cho phep tinh toan mpt yiu to nao do cOa chat A dua vao 2 cdng thirc giira cac bifo: nA = mA/A va VA = dktc*nA; (dktc = 22.4); Trong d6 bien A bilu thi khdi lugng moi cua chat A.

Npi dung day hoc: Tinh toan tu dgng so moi hojc khoi lugng hojc thi tich cCa mgt chat khi biSt cac ySu to con lai theo cong Ihilc li&i he gitta ba ylu 1» moi, kh6i lugng va the tich.

Bai tap I: L^p trinh tinh so moi photpho va oxi khi bilt kh6i lugng ciia chiing tuong ling la a vabg. Bilt P = 31, 0=16.

Bai tap 2: Tinh thl tich ciia C02 va 02 khi bilt s5 moi va khoi lugng tuong litng cua hai chat nay la a moi va b g.

Chuffng trinh giai bdi tap hoa hoc Giai bdi t^p 1 constP = 3 1 ; 0 = 1 6 ; varmP, m02, nP, n02: real;

begin

write ('nhap khoi luong photpho va oxi:');

readln(a, b);

nP: = mP/P;

n 0 2 : = m02/(2*0);

writeln('so moi phopho la: ', nP :0:2);

writeln('so moi oxi la: ', n02 :0:2);

readln;

end.

Gidi bai tap 2 const C = 12; 0 2 = 32; dktc = 22.4; {lit}

var mP, m02, VG, V02, n02: real;

begin

write ('nhap khoi luong photpho va oxi:');

readln(a, b);

VC := mP/dktc; n02 := m02/02;

V02 := n02/02;

Wrileln ('The tich cacbon la: ', VC :0:2);

Writein (-The tich oxi la: \ V02 :0:2);

readln;

end.

Vi du 2. Tich hgp Tin hoc - Vgl li

Chu di chung: Gidi tren may tinh cac bai toan ve lyc ddy Acsimet.

True cdc mgch kien ihicc:

Vdt li: Dinh luat Acsimet: Lyc ddy Acsimet tinh theo cdng thuc FA = d.V; Trono dd' V la the lich chat long/ khi bj vat chiem cho (m3); d la trgng lugng rieng cua chdt long/ khi (N/ m3). Neu vat cd trgng lugng P (N) thi vat chim. la lung hay ndi phy thugc vao quan he P >, ^, hay < F (d I >, =, hay < d); d 1 la trgng neng ciia vat.

Tin hgc: Cac cau lenh theo cdu triic tuan ty va re nhanh cd thl giai quyel cac bai tod xoay quay cong thuc FA = dA*VA va mdi quan he giira P va FA.

(11)

TAP CHi KHOA HOC - BO 7/2016 155 Ngi ching dgy hgc: Tinh todn ty dgng lyc d i y Acsimet vd the tich va/ ho§c khdi lugng chit ldng/ khi md v | t chilm ch5.

Bdi tgp: Mgt khii kim loai cd ygng lugng P = a N, khi tteo v§t vdo lyc k l r^i tha vao ttong nude thi lyc k l chi F = b N.

a) Cho bilt v^t noi hay chim ttong nude;

b) Tinh lyc day Acsimet iSn vdt;

c) Tinh thl tieh cda vdt (bilt dnudc = 104 N/ m3).

Xdc dinh bdi todn h i p u t : P : F : d n = 10000;

Ouput: FA? V? Kit lugn vgt noi hay chim.

Chmmg trloh giai bdi tap \%i \i const dn= 10000;

var P, F, FA, V : real;

begin write (Trong luong cua vat, P = '); readln(P);

write ('Gia tri tren luc ke F = ' ) ; readln(F);

FA: = P-F;V:=abs(F)/dn;

if FA>0 then writeln(*Vat chim') else writein ('vat noi');

write ('Luc day Acsimet la:', FA:0:1);

write ('The tich cua vat la:', V:0:1); readln;

end.

Vi dg 3: Tich hgp Tin hgc — Todn hgc

Chu de chung: Su dung mdy tinh d l tinh gid tri cua da thdc theo cdng thuc Hoocner.

Trge cdc mgch kiin thuc:

Toan hgc: Da thuc f (x) = aox" + aix""'... + an-ix+an cd t h l tinh dya vao da thdc p (x) = box" + bix"'... + bn-ix+bn theo cdng thue Hoocner sau day: bo = ao; bk = bk.|X x + at vdi k = 1,2,..., n. Gid yi cdn tinh cda f (x) la bn-

Tin hgc: Cau tnic dir lieu mdng mgt chilu va cdu ISnh Idp cd thl tinh gid tri da thuc theo cdng thdc Hoocner.

Ngi dung dgy hgc: Su dyng mdy tinh d l tinh gia yi da thdc f (x) = aox" + aix""'... + a^.

ix+an tai ede dilm x cho ttudc.

(12)

158 I TRUdlME BAI HOC T H l l B^H^^jSL Xdc dinh bai toan

Input: n, x, \k ming a gom cic phin tiJr tiir a[0] den a[n];

Output: f (x)

'i tudng thuat toin dugc thl hi?n qua vi dy tinh gii trj da thirc f (x) = 3x' - 4x + 7x + 8 tai X = 2, CM thl nhu sau:

i ai bi x=2

0 3 3

I

•4 2

2 7 11

3 8 30 Do^n chmmg trinh chinh tinh gia tri da thirc

b[0]:=a[0]:

for k := 1 to n do b[k] := x*b[k-l] + a[k];

writelnCGia tti da thue la:', b[n]:0:3);

3. KETLU^N

Day hgc tich hgp khuyen khich hgc sinh higu duge nhihig ndi dimg cda cdc mdn hgc cd thl ket ndi ndi tgivdi nhau va cd mdi quan he ngi tgi vdi nhau. Thay vi hgc theo chtromg ttinh "don mdn" rieng biet, hge sinh dugc hgc theo chuong trinh "tich hgp" dya tten sy phdt ttiln nhimg kT ndng nhdn dugc td mgt chd dl cy thl vd phu hgp. Ban chit cda vigc thyc hien tieh hgp Id xem xet li thuyit eua mdt ITnh vyc (mdn hgc) hudng din chu dl chung bing each dung trgn cdch nhin cda ITnh vyc (mdn hgc) khdc.

Cd nhigu md hinh tich hgp khdc nhau, tigu bilu la "kit noi", "ldng ghep", "sdp xep",

"chia sg", "tich hgp", "mang nhgn" va "xdu chudi". Nhihig md hinh nay phdn dnh mdt yong ba cdch tilp can tich hgp dd Id "tich hgp da mdn", "tich hgp lien mdn", vd "tieh hgp day du". Cdc md hmh vd cae each tilp cdn tich hgp deu nhdm lam rd mdt trong ba mue dd tich hgp giua cdc ITnh vyc (mdn hgc), dd Id "tuong lien", "hda trdn" va "hgp nhdt".

Day hgc lap Umh nen dugc tich hgp vdi cdc mdn khoa hgc ty nhien nhu H6a hoe Vdt li vd Todn hgc, vd ngn theo cdch tilp can "tich hgp lign mdn", "ty tieh hgp" ho§c "phoi hgp". Hign nay, viec day hgc lap ttinh cho sinh vien su pham Tin hgc d cdc trudng Dai hoc vdn theo tigp can day hgc dan mdn. Do dd, eac hgc phdn gidng day d bde dai hge Hen quan din lap trinh ngn ddi mdi theo hudng tich hgp, dl gidp sinh vien hilu dugc sy kit ndi tij

(13)

T A P C H f K H O A H O C - B D 7 / 2 m S || '^57

nhihig kiln thuc, kT ndng ma hg dugc hgc tgp, nghien edu vdi nhihig tinh huong cua thyc tign. D|ic biet, v i | c tich hgp nay nen dp dyng cho cdc khoa hodc chuygn nganh Tin hgc trong cdc trudng dgi hgc.

Dinh hudng ddi mdi ddo tgo hgc phin lien quan den lap trinh nen Itm y mdt sd dilm sau ddy:

- Cdc li thuyit cua don mdn Idp trinh vd cua cae dan mdn thugc cac ITnh vuc khdc (cd thl tich hgp vdi lap trinh) vin giir nguyen phan co ban nhu trudc day (neu chiing dd phu hgp).

- Nhdng li thuygt chuyen sau cua tdt cd eac hgc phan nang tinh hdn ldm nen thay bdng cdc chd d l tich hgp cd y nghTa thyc tiln.

- Tim higu nhOng dgc digm ve cdc ITnh vyc, nganh nghe, don vi san xuat. Tu do, tim each thiet ke cac chu dg tich hgp de gidi quygt nhdng vdn de lign quan den cdc ddc diem do bdng each xdy dyng cdc chu dg lap yinh tich hgp de gidi quyet. Vi du, d mdt so dia phuong cd cdc nhd may sdn xudt xi mang. Cac van de cin tim higu d ddy cd the la: Qui trinh dilu khiln sdn xudt, nguyen lieu dau vao vd tieu chudn cua sdn phdm xi mang d ddu ra, cac phdn ung hda hge, eac qua trinh vat ly vd hda hgc diln ra trong qua trinh dilu chi xi mdng.

Tu nhimg tim hieu nay, cd the hinh thdnh mdt chu d l hgc tap ma trong dd van de cdn gidi quyet Id qui trinh ty ddng hda dugc thyc hien bdng lap ttinh.

TAI LIEU T H A M K H A O

1. Abayomi Aroso (2013), "How will a Teacher Enhance Student Achievement in an Integrated Classroom", EDU 690: Action Research, University of New England.

2. Benjamin Bloom (1956), "Taxonomy of Educational Objectives- Cognitive Domain", New York: David McKay Company, Inc.

3. Cater Good (Ed.) (1973), "Dictionary of Education, Third Edition ", New York: McGraw Hill.

(Ref. from Kathy Lake, 1994).

4. Fogarty Robin (1991), "The Mindful School: How to Integrate the Curricula", Palatine, IL:

Skylight Publishing, Inc. (Ref from Kathy Lake, 1994).

5. Gordon Vars (2000), 'Common Learnings: A 50 years Quest", Journal of Curriculum and Supervision Fall 2000, Vol. 16, No 1, p. 70-89.

6. Jacobs Heidi (1989), "Interdisciplinary Curriculum. Design and Implementation"', Alexandria, VA: Association for Supervision and Curriculum Development. (Ref. from Kathy Lake, 1994).

7. John Dewey (1938), "Waste in Education", Chapter 3 in "The School and Society", The University of Chicago Press (1907): pp.77-110.

(14)

158 II TRUahlG BAI HOC T H U BO Hfi^^^

•• • K 1 2

8. Jordan Catapano (2010), "Approaches to Successful Cross-Curriculum Integration , m f^'' News, Lessons & Shared Resources, By Teachers, For Teachers, Available at website:

http://www.teachhub.com/

9. Kathy Lake (1994), "Integrated Curriculum", in "School Improvement Research Series (SIRS), sponsored by the Office of Educational Research and Improvement (OERI). U.S.

Department of Education.

10. Kevin Costley (2015), "Research Supporting Integrated Curriculum: Evidence for using this Method of Instruction in Public School Classrooms ", Arkansas Tech University.

H. Kysilka Mareella (1998), "Understanding integrated Curriculum", The Curriculum Journal Vol 9 No 2 Summer 1998 p. 197-209, Copyright British Curriculum Foundation 1998, ISSN 0958-5176

12. Philip Jellyman (2015), "Models of Curriculum Integration in New Zealand Secondary Schools ", Sabbatical report. Term 2, New Zealand

13. Ralph Tyler (1949), "Basic Principles of Curriculum and Instruction", Chapter 3, Copyriglit 1949, 1969, 2013 by The University of Chiacago Press, ISBN-I3-978-0-226-08664-4 (e-book) 14. Susan Drake (2004), "Meeting Standards Through Integrated Curriculum", Copyright © 2004 by ASCD - Association for Supervision and Curriculum Development, Virginia, USA.

THE INNOVATION OF PROGRAMMING TEACHING AIMS TO THE INTEGRATED APPROACH FOR INFORMATICS

TEACHERS TRAINING AT LOCAL UNIVERSITITES

Abstract Integrated curriculum or course brings lo the meaningful combination in one or several subjecl.v. It helps students to understand the connection between knowledge and skills which ihey learned at schools and in society Researc/iing on integrated curriculum for clear understands and good use i\ one of imporlani i\-sues of Vietnam's education This paper presents some basic theories of integrated curriculum and gives

•ionie siiggeslions fur programming teaching loM-ards applying integrated curriculums for Informatics teachers training curriculums al local uuiversilies.

Keywords Integrated L urricuhmi. multidisciplinary integralion. interdiscipTmaiy integralion. Iransdisciplinary integration

Referensi

Dokumen terkait

Theo quy djnh ciia phap lual Viet Nam thi muc dich va ndi dung cua thoa thuan ve che do tdi sdn ciia vg chdng khdng dugc \ i pham cac quy dinh vl nguven tdc chung ciia che do lai san

Nhiing hoat quan hiet yeu cau phat huy tinh tich eye, ddc dgng cua Doan Thanh nien, Hdi sinh vien t6 lap, sang tao cua ngudi hgc, trong qua trinh giang day cac mdn khoa hgc Mac -

1 Moutinho & Smith 2000 sir dung yeu to thuan tien md khach hang cam nhan trong giao dieh/truy cap de ap dung cho do ludng chdt luong tdng hgp cua dich vu qua ATM va dich vu qua nhan

Thyc trang npi dung mon hoc Phap luat dai cu-cng qua phan tich SWOT Diem msinh: Da xay dung duge ndi dung ehuang trinh mdn hpc dam bao tmh ly luan va khoa hge; Dpi ngii giang vien

Thff ba, ttong qud trinfa day viet luSn deoj Anh cho ngtfcfi hgc, ngffdi day thidt k^ nhilu hm dpng day vie^t khdc nhau, cho ngffdi hge thamp thdo lugn nhieu hdn khi flm y cho bdi

Day la nhdm ddng vat Than mim bao gdm cdc loai d'c Cd phdi Pulmonata va Cd mang Prosobranchia rdt da dang, cd d nhilu noi, nhung tdm quan trgng cua chung vl khoa hgc vd thuc tiln trong

Trong ndi dung bdi vidt ndy chdng Idi de cap din viee ttIp can eda hai khoa hgc id Tridt hge va Xa hdi hgc trong nghien cffu phdp luat, cdn flffoe ggi Id tridt hgc phdp luat vd xa hdi

Ddc biet, ngudi cd NLVDKT phdi la ngudi bigt phat hien van de, tim dugc cdch gidi quylt vdn dk cd trong ndi dung bdi hgc, trong cae vdn de hge tap cd ndi dung lign quan vdi thyc tien,