• Tidak ada hasil yang ditemukan

Жасыұлғайған көп жылдық шөптердің шымды өңдеу тəсілдері бойынша 2 жылдық орташа өнімділігі ц/га (пішен)

Dzhemaledinova I.M., Dmitriev P.S., Akhmetov M.B

Кесте 1. Жасыұлғайған көп жылдық шөптердің шымды өңдеу тəсілдері бойынша 2 жылдық орташа өнімділігі ц/га (пішен)

168

Қазіргі таңда еліміздің 35 млн.га жайылымдық жерлер түбегейлі жақсартуды қажет ететін болса, соның інішде, Солтүстік Қазақстанның орманды далалық жəне далалық аймақтарында 11 млн.га жайылымдық жерлер түбегейлі жақсартуды қажет етеді [10].

Солтүстік Қазақстанның орманды-дала зонасында жасы ұлғайған көп жылдық шөптердің егілген аумағы шамамен 1,0 миллион гектар алқапты алады, бірақ олардың өнімділігі төмен.

Сондықтан сапалы мал-азықтық дақылдарды дайындауда, жасыұлғайған шөптер мен табиғи жайылымдық жерлерді қалпына келтіруде топырақ өңдеудің шығыны аз, тиімді тəсілдерін əзірлеу, өнімділікті арттыру өте маңызды болып табылады.

Зертттеу нысаны

Солтүстік қазақстан облысы Қызылжар ауданның жасы ұлғайған көп жылдық, бір жылдық жəне мал азықтық дақылдары. Ауданның аумағында ауаның ылғалдану коэффициенті К=1,0-1,2 мəнге ие 2200-2300°С аралығындағы 10°C жоғары температура мөлшерімен сипатталады. Жылдық орташа жауын-шашын мөлшері – 310-350 мм [11].

Топырақ жамылғысы шалғынды қара топырақ, əдеттегі қара топырақ оңтүстік-шығыс бөліктерінде кебірленген əдеттегі қара топырақ, солтүстік бөліктерінде орманның сұры шақатты топырақтары, солтүстік шеткі бөліктерінде ірі сортаңданған массивті топырақтар таралады. Механикалық құрамы бойынша балшықты, ауыр құм балшықты, орташа жəне жеңіл құм балшықты, құмдақ механикалық құрамдағы топырақтар кездеседі [12-14].

Зерттеу материалдары мен əдістері

Далалық тəжірибелік зерттеу жұмыстары Н.В. Надеинның далалық тəжірибелер əдістемесі жəне алынған мəліметтерді статистикалық өңдеу Б.А. Доспеховтың əдістемесі бойынша жүргізілді [15-16]. Дақылдардың өнімділігі БҒЗИ əдіснамасына сəйкес төрт қайталанымнан тіркеу алаңы 200 м2 пішен ору əдісімен саналды.

Зерттеу нəтижелері жəне оларды талқылау

Тұқым себілген тəжірибе телімдерінде мал азықтық шөптердің өнімділігі əртүрлі шамада қалыптасты. Егілген мал азықтық шөптердің екінші жылында өнімділіктің ең жоғары көрсеткіші топырақты қайырмасыз өңдеу нұсқаларында байқалады. Бақылауға қарағанда айырмашылық 10,3-34,6 ц / га құрады (кесте 1).

Кесте 1. Жасыұлғайған көп жылдық шөптердің шымды өңдеу тəсілдері бойынша

169

Екінші жылынан бастап біріктіріп өңдеуден кейін ең жоғары өнімділік: дискі- леу+жырту+дискілеу жəне дискілеу+қайырмасыз қопсыту+дискілеу, бұл екі жыл ішінде орташа есеппен 72,8-75,9 ц / га құрады (кесте 1).

Бақылау нұсқасында 2 жыл ішінде 40,4-47,5 ц/га аралығында, соқамен өңдеу тəсілінде ең жоғары өнімділік дискілеу+жырту+дискілеу нұсқасында 75,9 ц/га құраса, қайырмасыз өңдеу тəсілдері бойынша ең жоғары өнімділік дискілеу+қайырмасыз қопсыту+дискілеу нұсқасында 73,4-71,0 ц/га құрайды. Минимальды өңдеу тəсілдері бойынша 2 жолды дискілеу нұсқасында 59,2-54,5 ц/га жоғары өнімділікті құрады.

Қорытынды

Зерттеу нəтижелеріміз бойынша жасыұлғайған көп жылдық шөптердің өнімділігін арттырумен қалпына келтіруде 3 түрлі шым өңдеу тəсілдерінің 14 нұсқасында СҚО топырақ климаттық жағдайы үшін тиімді шым өңдеу тəсілдері: Соқамен өңдеуде дискі- леу+жырту+дискілеу нұсқасы, қайырмасыз өңдеуде дискілеу+қайырмасыз қопсыту+дискілеу нұсқасы, минимальды өңдеуде 2 ізді дискілеу нұсқасы бойынша жүргізілген шым өңдеу тəсілдері тиімді болып табылады.

Əдебиеттер тізімі

1. Canfield R.H. 1957. Reproduction and life span of some perennial grasses of southern Arizona. J. Range Manag, 10, №5.

2. Кирюшин В.И., Лебедева И.Н. Изменение содержания гумуса черноземов Сибири и Казахстана под влиянием сельскохозяйственного использования//Докл.ВАСХНИЛ.-1984.

№5.

3. Кирюшин В.И. Сельскохозяйственное использование почв Сибири и Казахстана в сравнении с североамериканскими аналогами//Докл.на плен.засед.VIII Всесоюзн.съезда почвоведов.-Новосибирск, 1990.

4. Пайпер Ч. Многолетние кормовые травы и их культура.-М.-Л.: Сельхозгиз, 1930.

5. Кушенов Б.М., Кушенова С.М. Основная обработка под кормовые культуры. //

Кормопроизводство.-1996.-№2.-С.10-12.

6. Ансабаева А.С., Болотов В.С. Анализ развития экологически безопасной продукции в Костанайской области, как фактора устойчивого развития сельского хозяйства. -2019. -№2.- С.-168-173.

7. Торнов Д.В., Влияние основной обработки пласта многолетних трав на урожайность яровой пшеницы в зернотравяном севообороте в северной лесостепи Тюменской области.

Диссертация 2007.

8. Агроэкологическое семеноводство многолетних трав. Методическое пособие. – М., 2013. – 52 с.

9. Киричкова И.В. Приемы повышения продуктивности многолетних трав и их влияние на плодородие почв в условиях Нижнего Поволжья // Автореф. дисс. докт. с.-х. наук. – Кинель 2009. – 41 c.

10. Балябо Н.К. Освоение целинных земель и мелиорация степных солонцеватых почв// Докл.ВАСНИЛ.-1956.-вып.4.

11. Агроклиматические ресурсы Северо-Казахстанской области научно-прикладной справочник. Астана, 2017. С. 45.

12. Агроклиматические ресурсы Северо-Казахстанской области научно-прикладной справочник. Астана, 2017. С. 45.

13. Федорин Ю.В. Почвы Казахской ССР. Выпуск 1. Северо-Казахстанская область/

Алмата, 1960. – С. 39.

14. Дурасов А.М., Тазабеков Т.Т., Почвы Казахстана. Алматы, 1981. – С. 118.

15. Надеин Н.В. Методика полевого опыта, Москва, Колос, 1983.

16. Доспехов Б.А. Методика полевого опыта, Москва, Колос, 1985.

170

ВЛИЯНИЕ ЭФФЕКТИВНЫХ СПОСОБОВ РАЗДЕЛКИ ДЕРНИНА НА УРОЖАЙНОСТЬ МНОГОЛЕТНИХ ТРАВ В ЛЕСОСТЕПНОЙ ЗОНЕ СЕВЕРА КАЗАХСТАНА Көшен Б.М., Шаяхметова А.С., Тоқтар М., Ахметов М.Б., Темирболатова А.К.

Северо-Казахстанский государственный университет имени М. Козыбаева Аннотация

В данной статье были проведены опытные исследования с целью повышения продуктивности многолетних трав, улучшению качества кормовых запасов, из вариантов почвооборотки плугом на урожайность старовозрастных многолетних трав в условиях Северо-Казахстанской области были проведены 14 эффективных практических исследовании по выявлению качественной почвооброботки.

Урожайность сена при разделке дернины была различной и в основном зависела от вида обработки. Максимальный сбор обеспечили варианты дискование+вспашка+

дискование, дискование+безотвальное рыхление+дискование, где в среднем за два года он составил 72,8-75,9 ц/га сухой массы. Прибавка по сравнению с контролем составила 34,6- 31,5 ц/га.

Ключевые слова: старовозрастные многолетние травы, кормовые культуры, урожайность, разделки дернины, пастбища, сенокос.

INFLUENCE OF EFFECTIVE METHODS OF CUTTING SODNEY ON THE YIELD OF PERENNIAL GRASSES IN FOREST-STEPPE ZONE OF NORTH KAZAKHSTAN Kоshen B.M., Shayakhmetova A.S., Tokar M., Akhmetov M.B., Temirbolatova A.K.

North Kazakhstan State University named after M. Kozybaev Abstract

In this article, pilot studies were carried out with the aim of increasing the productivity of perennial grasses, improving the quality of fodder stocks, from the options of soil rotation by a plow for the yield of perennial old perennial grasses in the North Kazakhstan region, 14 effective practical studies were conducted to identify high-quality soil cultivation.

The yield of hay when cutting turf was different and mainly depended on the type of processing. The maximum collection was provided by the options of ejection + plowing + disking and disking + subsurface cultivation + disking, where on average for two years it amounted to 72.8- 75.9 c / ha of dry weight. The increase compared with the control amounted to 34.6-31.5 kg / ha.

Key words: perennial old grasses forage crops, productivity, soil cultivation, pastures and hayfields.

UDC 633.34(574.1)

PHYSIOLOGICAL CONDITION OF SOY CULTIVARS IN WESTERN KAZAKHSTAN Kuldybaev N., Suleimanova G., Dutbayev Y.

Kazakh National Agrarian University, Almaty Abstract

The work is based on the consideration of the manifestation of physiological reactions of cultivated soybean varieties in the conditions of the laid infectious background on the basis of an experimental agricultural station in Aktobe. In particular, the article demonstrates the use of the

171

modern open source MultispeQ spectral apparatus for collecting a wide range of phenotypic indicators of soybean and environmental parameters that can be used for the physiological status of plants. On the other hand, the article describes an attempt to characterize the physiological changes of soybeans by means of statistical processing of all field data using the R package and the PhotosynQ platform. The variety factor in 12 soybean breeds influenced the following physiological parameters: the difference between leaf temperature and ambient temperature, leaf surface moisture, leaf slope angle, chlorophyll fluorescence fraction (LEF, NPQt, Phi2 and PhiNO).

Variety factor did not affect PAR– photosynthetically active radiation and the quality of light absorbed by plants.

The article is intended for scientists, PhD students, masters, breeders and farmers.

Key words: soybean, variety, MultispeQ, physiology, photosynthetic parameters, factor.

Introduction

Soybean, as a legume crop, is the world's leading consumer by consumption [1]. In Northern Kazakhstan, over 200 thousand hectares were allocated for soybean crops and by 2020 it is planned that the domestic market for soybeans will be about 350 thousand tons, which will be provided with local products [2]. Unfortunately, the yield of soybeans in the main producing countries in the past was suppressed by diseases [3], as well as by various abiotic factors [4].

Environmental stresses in general, as well as in particular salinity, drought, temperature, light and ultraviolet radiation can increase the severity of the problems that plants will face in the coming decades [5, 6, 7, 8]. The main efforts to breed traits that provide resistance to drought, cold, heat, nutrients and salinization are already made every year around the world [9].

As is known, all organic nutrients of plants are produced in the cells of the leaves, in the process of photosynthesis, and are distributed throughout all living cells of the plant, passing mostly through phloem tissues. However, when the pathogen interferes with the upward movement of inorganic nutrients and water or the downward movement of organic substances, diseased conditions lead to the fact that parts of the plant cannot take these substances. Thus, the affected parts will not be able to perform their own functions and this affects the general condition of the plants and the progression of the disease. If the movement of water to the leaves is inhibited, the leaves cannot function properly, photosynthesis diminishes or stops, the roots stop receiving nutrients, and fasting and death of the plant occurs [14].

Understanding how photosynthesis responds to environmental factors is crucial for improving plant production and biodiversity conservation in the context of global change, including all aspects of photosynthesis, from basic concepts to methodologies, from organelle level to the entire ecosystem [15]. In practice, photosynthesis as a component of the phenotype is very sensitive to rapid fluctuations in environmental conditions, such as changes in light, temperature, humidity, etc.

The resulting stresses can in some conditions lead to photodamage of the photosynthetic apparatus as a result of which active oxygen forms can be formed, resulting in damage to the plant [16]. These and other reasons do not find answers, mainly due to the substantial laboriousness of conducting relevant research.

The solution to the above problems is a comprehensive phenotyping platform that combines openness, accessibility, design, data control, and data interpretation. This device combining these requirements was proposed by Kuhlgert with the authors [17], with which it is possible to measure light intensity, temperature, humidity, CO2, coordinates, time and place, in field and laboratory conditions. The obtained indicators are transmitted from the device via the Internet to computers and smartphones for analysis.

In the present work, the goal was set - to investigate the effect of varietal affiliation in soybean culture on certain physiological processes using the modern spectral apparatus MultispeQ.

The need to conduct this study on a selected topic is connected with clarifying the dependence of the determining photosynthetic and other physiological parameters of soy on the effects of biotic and abiotic factors, which is the relevance of this work. In this connection, in this experiment, the

172

MultispeQ nano-spectral apparatus was tested for the first time as a means of early diagnosis of problems.

Due to the fact that plants are subject to various highly dynamic, unpredictable fluctuations in environmental conditions, the provision of such tools as PhotosynQ and MultispeQ with sensitive plant phenotype will significantly bring together laboratory and field activities [17].

The hypothesis of the present study is based on the assumption that such environmental parameters as, for example, the intensity and quality of light, temperature, and physiological components, such as chlorophyll fluorescence and the relative content of chlorophyll, depend on the influence of a particular soybean variety.

Materials and Methods

Current work was carried out in the Aktobe region, on the basis of Aktyubinsk Agricultural Experimental Station LLP during the fruit formation phase. The material itself served as 12 varieties of soybean of foreign selection, presented in Table 1. For the growing season, the collection nursery was maintained in a clean state from weeds (manual weeding). During the growing season, manual watering of plants was carried out twice in the nursery (June - July).

The collection of physiological parameters of soybean was carried out using the spectral apparatus MultispeQ. The device works using the PhotosynQ Web application, which can be accessed on the PhotosynQ website (https: // photosynq. Org), which was created using Ruby on Rails 4 [18], Node-JS (https: // nodejs.org) and PostgreSQL ORDBMS.

(https://www.postgresql.org). The source code for all applications is available and documented on Github (https://github.com/PhotosynQ). The MultispeQ device itself was based on a Teensy 3.1 microcontroller (https://www.pjrc.com/teensy, https://arduino.cc) with 72 MHz, 32-bit ARM Cortex-M4 processor. The firmware was written in C ++ using the Teensyduino add-on for the Arduino IDE (https://www.pjrc.com/teensy). Both boards were developed using KiCad (http://www.kicad-pcb.org) [17].

In the process, 379 measurements were taken, i.e. 15-20. Meanwhile, each measurement included such photosynthetic parameters as: chlorophyll-Phi2 fluorescence, PhiNO, NPQt, qL, LEF, relative chlorophyll: SPAD, chlorophyll absorption at 450, 535, 605, 650, 730, 850, 880 and 940 nm, the angle and the cardinal direction of the sheet, the temperature of the sheet and the ambient temperature [17]. The obtained indicators were subjected to statistical analysis using the programs PhotosynQ and R.

Results and discussion

Temperature and relative humidity are measured in the MultispeQ using a dual sensor (HTU21D, Measurement Specialties, Inc.) with an accuracy of 2% at a relative humidity of ± 0.3 ° C between 5-60 ° C. The sensor can measure these parameters outdoors or during measurements, allowing us to estimate the humidity caused by leaf transpiration [16]. The distribution of these signs in the general population is normal.

The typical range of differences between leaf temperature and ambient temperature is: from -5 to + 10 ° C. According to our data, on different varieties, it was within -2.8-4.4. The distribution of this feature in the population is skewed to the right, i.e. tend to increase the value. The box diagram with a mustache allows us to see how variable objects we have are, which are included in each group. The black line is the median, and the box is plus or minus 25% of the median. That is, this box is a typical 50% cluster value. According to our data, in the general population, in 50% of measurements it was within -2.8-4.4 ° C, in the other half of measurements, these indicators were within 1-2.8 and 4.3-7.5 ° C, and the emissions reached –12 ° C. The distribution of this attribute in the general population is skewed to the right, i.e. tend to increase the value of the temperature index sheet.

The value of the angle of inclination of the sheet in the general population in half of the measurements is in the range from 25 to 57%, in the other half - from 3-25 and 57-100%.

Chlorophyll fluorescence fraction LEF. The distribution of measurements in the general population in terms of the chlorophyll LEF fluorescence fraction was bimodal (Figure 1).

According to our data, this year, on soybean varieties, on average, this indicator was in the range of

173

105-160. In 50% of measurements, this indicator was in the range of 80-180. In the other half of the measurements, it reached 0 to 240. (Fig. 1). Analysis of variance showed the statistical significance of the effect of soybean varieties, this indicator (table 1).

Figure 1 - The box-plot of the parameters of the distribution of the fluorescence fraction of chlorophyll LEF leaf in the general population of measurements in soybean varieties (Aktyubinsk SHS, 2018)

Chlorophyll fluorescence fraction Phi2 is the fraction of light energy captured by Photosystem II, which is aimed at photochemistry, in order to process ATP and NADPH into sugar for plant growth. Typical range: 0 - 0.82. According to our data, the median of this indicator was in the range of 0.3-0.4. In 50% of measurements - 0.25 to 0.6. The other half is between 0.2-0.25 and 0.4-0.7.

Dispersion analysis showed the statistical significance of the effect of soybean varieties on the fluorescence fraction of chlorophyll Phi2.

The fluorescence fraction of chlorophyll PhiNO. PhiNO shows the fraction of light energy captured by the Photosystem II. This usually means the loss of energy lost in unregulated processes that can damage photochemistry. Typical range: 0.15 - 0.55. The distribution of measurements in the general population in terms of the fluorescence fraction of chlorophyll PhiNO was normal, slightly oblique to the left, prone to lower values. According to our data, this year, on soybean varieties, in half of the measurements this indicator was in the range of 0.3-0.4, in the other half of the plants it was 0-0.3 and 0.4-0.6. There was a single emission indicator of 0.7. (Table 1).

Chlorophyll NPQt fluorescence fraction. The distribution of measurements in the general population in terms of the chlorophyll fluorescence fraction NPQt was normal, slightly oblique to the left. The fraction of light energy captured by Photosystem II, which is aimed at non- photochemical quenching and is dissipated as heat inside the sheet. The plant actively “sheds” an excess of trapped light to avoid damage to photos. The typical range is 0 - 0.85 [22, 23]. The distribution of measurements in the general population for this indicator was normal, slightly oblique to the right. In the current year, in soybean varieties, in half of the measurements, this indicator was in the range of 380-1500 nm. The other half was in the range of 0-380 and 1500-2000 nm.

174

Table 1 - Measurements of physiological parameters using the MultispeQ apparatus on commercial soybean varieties in the field (Aktobe AHOS, July 2018). № Variety Origin Leaf surface temperature 0 С Leaf Temp Differential , 0 С Leaf surface moisture , %

Leaf angle , %

Chlorophyll fluorescence fractions, nm PAR, nm LEF NPQtPhi2 PhiNO 1 Samer 1 Russia 33 -3,8 35,8 44 151,5 0,9 0,4 0,4 986,1 2 Samer 2 Russia 32 -4,3 36,5 36,4 152,4 1 0,4 0,3 982,3 3 Samer 3 Russia 33 -4,1 37,1 29,7 160,5 1,1 0,4 0,4 1046,4 4 Samer 5 Russia 33 -3,4 37,3 33,3 136,4 0,7 0,4 0,4 974,2 5 К-9648 Maple Ridge Canada 34 -2,8 35,4 46,3 122,1 0,7 0,4 0,4 1062,4 6 К-11004 Svapa Russia 35 -3,3 32,4 37,1 127,8 0,8 0,4 0,4 1018,1 7 К-9587 Belor Russia 35 -3,3 32,3 53,1 113,4 0,6 0,4 0,4 850,5 8 К-10925 Toury Czech 35 -4 33,4 47,5 128,1 0,7 0,4 0,4 879,4 9 Anastasiya Ukraine 35 -4,2 32,1 36,6 140,1 0,8 0,4 0,4 1104,5 10 Tanays Ukraine 35 -4,4 35,5 49,2 137,9 0,9 0,4 0,3 868,3 11 Isidor France 35 -4,4 34,3 50,9 132,5 0,8 0,4 0,4 858 12 Cheremosh Ukraine 34 -4,2 33,4 49 105,6 0,6 0,5 0,4 678,3 P- value < 0.001 < 0.001 < 0.001 < 0.001 < 0.0011 0.0007 0.0313 < 0.001 <0.001 < 0.001 0.0553 Effect Size (f-score) 12,0 5,2 4,1 4,5 11,8 2,6 1,8 4,6 1,7 Acceptance of the hypothesis HA HA HA HA HA HA HA HA H0 Note: LeafTempDifferentia - the difference between leaf temperature and ambient temperature in degrees Celsius; chlorophyll fluorescence fraction LEF, NPQt, Phi2 , PhiNO; PAR - photosynthetically active radiation (PAR) and the light quality; HA – alternative hypothesis, H0 is the null hypothesis.

175

Photosynthetically active radiation (PAR) and light quality are the most important parameters that MultispeQ can measure. Light intensity (PAR) Photosynthetically active radiation at wavelengths of 400 to 700 nanometers, which are used for photosynthesis. Typical ranges from 0 to 2000 micron shunts (under full sun) [17]. According to our data, the volume of photosynthetically active radiation was in the range of 858-1104 nm on different soybean varieties. Analysis of variance showed that the varieties had no effect on the amount of absorbed PAR. The differences were random. The distribution of measurements in the general population for this indicator was normal, slightly oblique to the right. In the current year, in soybean varieties, in half of the measurements, this indicator was in the range of 380-1500 nm. The other half was in the range of 0- 380 and 1500-2000 nm.

Conclusion

This work is the first attempt to analyze the physiological status of plants and the reactions of plants to abiotic and biotic stresses. In the conditions of the stationary sites of Western Kazakhstan, the MultispeQ apparatus and the open PhotosynQ system collected data on the most significant photosynthetic parameters from various soybean cultivars.

The use of dispersion analysis of physiological variables carried out using the R package allowed us to create a primary picture of the data for understanding the effect of certain stresses on important photosynthetic characteristics of plants.

Measurements on 12 soybean varieties of breeding in Russia, Canada, the Czech Republic, Ukraine and France showed that varieties affect the following physiological parameters: the difference between leaf temperature and ambient temperature, leaf surface moisture, leaf angle, chlorophyll fluorescence fraction (LEF, NPQt, Phi2 and PhiNO). Variety factor did not affect PAR–

photosynthetically active radiation and the quality of light absorbed by plants. The infectious load of the pure fungus Fusarium fungus had no effect on the infestation of plants by leaf spots, it depended on the variety. In the future work, the account of physiological parameters is planned to be carried out simultaneously taking into account plant infestation with root rot. This will make it possible to carry out a correlation analysis of the effect of the influence of the plant damage factor of root rot and the variables of the physiological state of the plants.

The current work was done according the Grant project funded by Ministry of Science and Education of Kazakhstan “The impact of Fusarium infection and drought on the physiology and yield of soybean lines”.

References

1. Dragan Terzić, Vera Popović, Mladen Tatić, Viliana Vasileva,Vera Đekić, Vladan Ugrenović, Slobodan Popović, Pašaga Avdić. Soybean area, yield and production in world:

Conference: 22th International ECO-Conference® 10th Eco-Conference on safe food. Novi Sad, Serbia, 26th - 28thSeptember 2018. ISBN 978-86-83177-53-0, COBISS.SR-ID 325420295At: Novi Sad, Serbia.

2. http://www.fao.org/faostat/en/#data/QC/metadata

3. Wrather, A., Shannon, G., Balardin, R., Carregal, L., Escobar, R., Gupta, G.K., Ma, Z., Morel, W., Ploper, D. and Tenuta, A., 2010. Effect of diseases on soybean yield in the top eight producing countries in 2006. Plant Health Progress, 11(1), p.29.

4. Kremer R.J., Means N.E. Glyphosate and glyphosate-resistant crop interactions with rhizosphere microorganisms //European Journal of Agronomy. – 2009. – Т. 31. – №3. – С. 153- 161.

5. Wrather, J.A., Anderson, T.R., Arsyad, D.M., Tan, Y., Ploper, L.D., Porta-Puglia, A., Ram, H.H. and Yorinori, J.T., 2001. Soybean disease loss estimates for the top ten soybean-producing counries in 1998. Canadian Journal of Plant Pathology, 23(2), pp.115-121.

6. Rizvi, S.S.A., and Yang, X.B. 1996. Fungi associated with soybean seedling disease in Iowa. Plant Dis. 80:57-60.

Garis besar

Dokumen terkait