• Tidak ada hasil yang ditemukan

Vd1036-20142005814.pdf

N/A
N/A
Protected

Academic year: 2024

Membagikan "Vd1036-20142005814.pdf"

Copied!
6
0
0

Teks penuh

(1)

Tuyen tap bao cao khoa hoc Hdi nghi Khoa hgc ky thuat Do ludng toan qudc Idn thfl IV Hd Ngi, 11 - 2005

4TINH TOAN VA MO PHONG TREN MAY TINH DONG HOC DIEU KHIEN CUA HE TLT DONG BAM TIN HIEU GOC TRONG DA! RADA

Le Chung Hgc vien Ky thudt Qudn sif

Nguyin Bdc Thdng

Trung tdm Khoa hgi ky thudt - Cdng nghe Qudn Sif

Tdm tdt:

Bdi bdo trinh bdy vi mot plufffng phdp tong hgiJ cd'u true cho he tif ddng hdm tin hieu gdc trong ddi Rada nhdm ddp dug i di yeu cdu ddc biet cua logi he thd'ng bdm ndy. Ke't qud i lia phitaug phdp long hgi) he hdm gdc trong ddi rada dd dugc kiem chifng bdng md phong tren mdy tinh.

I. DAT VAN DE

Hfi thd'ng tu ddng bam tin hifiu gdc trong dai Rada boat ddng theo nguyen tdc dua vao vific so sdnh gia trj thuc cua toa dfi gdc muc tieu vdi hudng can bdng tin hifiu (hudiig cue dai ciia cdnh sdng anten). Bai bao trinh bay vfi mfit phuong phap tifi'p can dd tdng hgp cdu true cho he tu ddng bdm tfn hifiu gdc trong dai Rada, nhdm dap utig cac yfiu cau ddc bifit va gdp phdn xdy dung phuong phdp tinb todn ddng hgc didu khidn cua hfi thd'ng tu ddng bam tin hifiu gdc muc tifiu.

II. TINH TOAN DONG HOC CUA HE TUDONG BAM TIN HIEU GOC Di tdng hgp hfi tu dgng bam cd thd dung mdt sd phuong phap khac nhau [1,2,3,7]

nhdm dat dugc cdc yfiu cdu vd chi tifiu chd't lugng cua he thdng trong trang thai qua do va trang thdi xac ldp, yfiu cdu vd tinh dieu khien dugc, quan sat dugc. Dd'i vdi bfi thd'ng bam tin hifiu gdc trong ddi Rada, ngudi la quan ldm nhifiu tdi vific giam sai sd cua he thd'ng trong trang thai xac lap. Sau ddy se trinh bay mdt sd ndi dung nham thuc hien muc dfch nay dd'i vdi he thd'ng.

L Lira chgn bac phiem tinh

Tfn hifiu dau vao cua he tu ddng bdm gdc chfla thdng tin vd toa dd gdc muc tifiu, dflgc tao ra dua tren co sd tin hifiu phan xa . Tin hifiu nay la tin hifiu bifi'n ddi chdm vi bi ban chfi' bdi kha nang co ddng cua muc lieu [2,5]. Vi vay dd dam bao chd't Iugng bam sat, hfi thdng tu ddng bdm gdc muc tifiu ciia dai Rada ihudng la he thd'ng phifi'm tinh bdc nhd'l [4,5]. Khi hfi thfi'ng chiu tac dfing bdi cdc tfn hieu bifi'n doi chSm nay thi ngudi ta thudng kd tdi sai sd

V 2a theo tdc dd AXy = — va cd sai sd iheo gia td'c Ax^ = — ; trong dd v la tdc do ciia tfn hifiu

K K ddu vao ; a la gia td'c bie'n thifin cua tin hieu ddu vao va K la hfi sd truydn mach hd cua he Ihdng.

Trong he thdng tu ddng bam gdc dai Rada, hfi sd tmydn mach hd K thudng dugc chgn kha \dn. Vi vdy, sai sd theo td'c dd va theo gia td'c thudng cd gia tri nhd. Di hfi Ihdng la he phie'm tmh bdc nhd't, cd the chgn dang dac tfnh bien dd tdn sd Idgaril L(to) cua hfi thd'ng hd [1,2,3,4]. Khi chgn dang dac Ifnh bien dd tdn sd Idgarit cua he Ihdng Ihi khdng

(2)

nhflng cdn thoa man yfiu cdu ve dd chinh xac cua he thdng dfldi lac ddng ciia tin hifiu dieu khidn, ma cdn cdn liru y dap flng dugc yeu cdu vd dd du trfl dn djnb, ve cdc chi lieu chd'l lugng cua he thd'ng trong trang thai qua dd (nhu thdi gian qua dd, do qua dieu chinh) va kha nang Igc nhifiu ciia he Ihdng .v.v. ..[1,3,5 ].

2. Chgn so dd ca'u true ciia be thdng ta dgng b a m tin hieu goc muc tieu So dd cd'u true be thdng tu dgng bam gdc muc tieu dugc chgn [2,5,6 ] cd dang hinh I.

^ M ^

AtrTr-V''i'>''i

t^bph Un j KHCNT(P) | — » | K C H ( P ) Hmh L So do cau true cua he ttr ddng bam gdc trong dd:

t^ - Lugng vao cua hfi thd'ng lu ddng bam gdc.

ty - Lugng ra ciia hfi thd'ng tu ddng bam gdc.

1 + OQ (t) - Tac ddng do su thang giang bien dd cua tin hieu phan xa.

&ij{t) - Tac ddng nhifiu loan

Kt,ph - He sd truyen cua bfi phan phdn biet thdi gian.

KHCNT(P) " Ham sd truydn cua co ca'u hieu chinh nd'i tifi'p.

KCH(P) - Ham sd truydn cua phdn tfl chd'p hanh.

Ddi vdi hfi thdng nay, do chu ky quel T^ cua cac xung do gdc cua canh sdng anten cd gia tri rd't nhd (T^ « Is), nfin cd thd sfl dung phep xap x i :

n (I)

Sau khi hgp nhd'l cac khdu ndm sau bd phdn biet vao phdn chd'p hdnh, se cd ham sd truydn ciia phdn tfl chd'p hdnh:

K,„(.P) _K,„(\ + T,p) p(\ + T,p) (2) Trong dd: K^H - hfi sd truyen ciia phan tfl chap hanh

T, va T, - cac hang sd thdi gian.

III. LUA CHON CAC THAM SO CHO HE BAM TIN HIEU GOC TRONG DAI RADA Vific lua chgn cac Iham sd cho hfi thd'ng tu ddng bam gdc cdn dua vao cac chi tifiu chd'l lugng yfiu cdu dd'i vdi qua trinh dieu chinh cua he Ihdng nhu thdi gian qua do T , dd qua dieu chinh cue dai a^ax ' s^' so bam sdt cho phep v.v... nhu da ndi tren. Trong thuc t^, dd'i vdi cdc muc lifiu la thie't bi bay cd ngudi ldi thi su bie'n thifin toa do gdc d ddu vao he bam gdc [3,5] thudng khdng qua 2[°/s]. Yfiu can vd dd chinh xac xac dinh toa dd gdc trong che' dd xac ldp d chfi' dd tu ddng bam sat la khdng qua 1,5 phut gdc, nghia la sai sd theo td'c dd d chfi dd xac ldp l^ < 1,5 . Ngoai ra, dd he tu dfing bam gdc dam bao yfiu cdu ve do tdc ddng nhanh, Ihi b ddy cd thd chgn thdi gian qua dd cho phep T^^ = (0,55 -r 0,65)[s] va dd qud dicu chinh cue dai (7ynz\ - (20 "=" 30)% .

De dap flng cdc yfiu cdu ddc biet ciia hfi thdng tu ddng bam gdc trong dai Rada,[l,3 5] cd thd chgn dac tfnh tdn sd bifin do loga mach hd mong mudn Lm(o)) cd dang hinh 2

(3)

A Lm((i)) [dB]

Igra [1/s]

Hinh 2. Dac tinh bien do tan sd loga mong muon

Dat u = t,, y = t, va chgn cac tham bie'n trang thai x, = y, x, = >•, x,= y tuong ung se nhan dugc phuong trinh trang thai cua he thong kfn mong mud'n co dang:

X = AX + BU]

Trong dd:

Y = CX 0 I 0 0

c=[b, b, 6„:

TJ,

0;

l + KT,

*.

(3)

(4)

(5) T,T,

TJ

TJ,

K - He so' truyen ciia he thd'ng hd mong mudn.

Dua vao ydu cau cha't lugng ddi vdi he thd'ng tu ddng bam gdc muc tidu dd'i vdi mdt loai dai Rada, se xac dinh duoc cac thdng sd: K = 100, Tl = 0,81 s, T2 = 0,135 s, T3 =0,015 s.

IV. MO PHONG DONG HOC DIEU KHIEN CUA HE T U DONG BAM GOC MUC TIEU

Sir dung phan mem cdng cu Matlab d^ md phong he tu dgng bam gdc muc tieu ddi vdi mdt loai dai Rada cd so dd e4'u true (hinh 1) va phugng trinh trang thai ciia he thd'ng kfn mong mud'n (3), vdi cac thdng sd K = 100, T, = 0,81s, T, = 0,I35s, T, =0,OI5s; se cd:

+ Sg dd md phdng he tu dgng bam toa do gdc muc tieu trong dai rada (hmh 3).

+ So dd md phong tao gia quy dao muc tieu trong mat phang ngang (hinh 4).

+ So dd md phong he tu dgng bam toa dd gdc trong che'do bam sat (hlnh 5).

+ Dac tfnh qua do ciia he tit ddng bam tfn hidu gdc trong dai radar (hlnh 6).

(4)

Hinh 3 So dd mo phdng he tu dpng bam toa do goc muc tieu trong dai rada

(5)

H—1|^ H "' I

L—' ti>iri MiK

[^AritdidDiiDBtie

ipTWyS

fiV-i-*L_rtr'

Hinh 4 So d6 tao gia quy dao muc tieu trong mat phang ngang (tuong tu ddi vdi mat phSng dflng)

H

imuwi Tnuitrtn

^-^^Hi}* "^ 1

IL>J mrinJ j „ , „ f „

CD-

, —KD

IjJSifiillbinslirIi

I<D WHt*

Hinh 5 So do he tu dong bam tga do gdc trong che' do bam sat

(6)

0.! 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 I t [s]

Hinh 6. fiac tinh qua dp ciia he tu dpng bam tin hieu gdc

V. KET LUAN

Trfin ddy da trinh bay vd mdt phuong phap tie'p can dd tdng hgp cd'u true hfi thd'ng didu khidn tu ddng bdm tfn hieu gdc trong dai Rada trfin co sd phdn tfch vd sfl dung cac yfiu cdu, dac diem ciia dai Rada, Cac so dd md phdng va dac tfnh qua dd da nhdn dugc trfin co sd md hinh ddng hgc cua hfi bam tfn hifiu gdc. Cac budc tfnh todn va md phdng trfin may tfnh cd thd su dung dd tdng hgp hfi thdng dieu khidn loai nay cho cac flng dung thuc tfi'.

Tdi lieu tham khdo:

[[]. EecceKepcKuu B. A, Hone E. U.

TeopuH cucmeM aemoMamuiecK030 pe?yjiupoeauuM.

Msdam. HayKa. MocKea. [972?

[2]. Apmexibee B. M, Huiyzun. E.A.

OcHoebi aemoMamuiecKOPO ynpae.iemm cucexi paduo3JieKmpounbix cpedcme.

MocKoea. eoenuHoe U3damejibcm60, [984 p.

[3]. ApmeMhee B. M

OcHoeu aemoMamuiecKOPO ynpae.ieHua cucmeM sneKmponubix cpedcme.

MuHCK-8U3py- [ 9 76e

[4]. npoeKmuoeanue Cjiedfiu}ux CucmeM.

Hadamejibcmeo "MauiUHOcmpoeuue MocKea" 1969 z.

[5]. JJyhun . a. M, KCUiMbiKoe . e. a..

IlocoOue no npocKmupoeauuio cucmeM ynpaenenun 3yP. MUHCK 1968 e [6J. Ceepdjioe. O. C.

SneMeumbi munoebix cucmeM aemoMomuuecKoeo ynpaejienufi.

MuucK - eujpy - 1982 ?.

[7]. Kuo B.C

Automatic Control System.

Prentice-Hall. International, Inc. (1995).

819

Referensi

Dokumen terkait

Chi bilt rdng, ddng bdo cu trii d cdc viing cdnh quan khdc nhau nin hipn nay sinh sdng tixng hai logi nhd Id nhd sdn vd nhi ddt tiinh tudng, Ddy Id ly do ddn tdi cdch t l ehiic mat bdng

Tuy nhidn, trong md hinh 4 dfin md hinh 7 khi dua ihdm cac yd'u td vi noi cu tru, thanh phdn ddn ldc, viec lam ehinh eua ngudi chdng vd cd sdng chung vdi cha me hay khdng thi ty sd

multocida phdn l§p dupe trdn cho thiy chiing deu mang day du cdc djc tinh sinh hpc d$c trung cua giAng vd phii hpp vdi md td ciia Carter 1984.. Kit qud xdc djnh tinh mSn cdm khdng sinh

d thdi ky tidn mdn kinh md dde bi0t Id thdi ky mdn kinh sy gidm sut estradiol huydt tuong c6 lidn quan ddn thay ddi edc ehi sd lipid mdu b i t lyi vd tdng ty 10 rdi logn lipid mdu, D$e

KHOA HOC VA CONG N G H C MO X/NGHIEN CUU sir PHAT TRIEN CUA VI KHE Nurr TRONG VRT ufu Dfl, BC TONG DE DU BAO THdl GIAN PHA HUY Vgt lieu da vd bd tdng Id nhung logi vgt lieu d

De dat muc tieu nghien ciiu tren, d l tai nghien cuu da khao sat bdng bang hdi cho 215 ngudi lao ddng hyc tiep sdn xuat ciia tap doan vd da sir dimg mo hmh phdn tich nhdn td khdm pha va

Tirdd, chting tdi xac dinh cac tieu chi bilu hien NLST cua HS chuyen trong hogt ddng giai bai tap BT phdn HHHC nhu sau: Tieu ehi 1: Phat hien vd lam ro vdn de NC trong tinh hulng cu

Chii the phdn bidn ludn phdi dung d gdc nhin cua xa h^i, ciia nhung nhdm ddi tupng thift thdi, nam bat dugc tdm tu, nguyf n vgng chinh dang ciia ngudi dan vdi tam thd khdch quan thi mdi