• Tidak ada hasil yang ditemukan

DAFTAR LAMPIRAN

VI. SIMPULAN DAN SARAN

6.1 Simpulan

1. Penyusunan indeks kesesuaian lahan dengan teknik fuzzy menggunakan nilai fraksi (pecahan) menyebabkan areal lahan dengan nilai indeks tinggi pada kriteria tertentu mengalami penurunan nilai indeks jika digabungkan dengan kriteria lain menggunakan fungsi perkalian (fungsi minimal).

2. Indikator lahan yang mengalami penurunan nilai indeks dari proses fuzzifikasi hingga penentuan indeks kesesuaian lahan adalah batuan permukaan, bahan organik, kejenuhan basa, kapasitas tukar kation, kemasaman tanah (pH), temperatur udara, dan tekstur tanah.

3. Proses alokasi lahan menggunakan metode compromise programming

menunjukkan bahwa tingkat kompensasi antara indikator tidak hanya mempertimbangkan aspek jarak Eucledian antar indikator, namun turut mempertimbangkan interaksi antar indikator, sehingga teknik kompensasi penuh memberikan hasil yang lebih baik dibandingkan teknik setengah kompensasi dan non-kompensasi

4. Hasil alokasi lahan menggunakan teknik kompensasi penuh (L1-metric) menunjukkan bahwa luas potensi lahan yang memungkinkan dikonversi menjadi lahan untuk komoditi basis perkebunan adalah 28 650 ha. Potensi tersebut terdiri atas 9.4 % hutan lahan kering, 77 % pertanian lahan kering, 13.9 % semak belukar, dan 0.1 % tanah terbuka. Lahan pengembangan tersebut, 53 % berada pada kawasan budidaya pertanian (APL) dan 47 % berada pada kawasan budidaya kehutanan.

5. Arahan kebijakan untuk mewujudkan alokasi lahan komoditi basis adalah: (a). Melakukan pemantapan kawasan lindung, (b). Melakukan penanganan kawasan lindung yang telah dibuka, (c). Melakukan pengelolaan kawasan budidaya dan pembangunan kawasan industri masyarakat perkebunan (Kimbun), (d). Pengembangan infrastruktur yang mendukung kemajuan wilayah pedesaan dan sub sektor perkebunan.

6. Strategi kegiatan untuk mewujudkan alokasi ruang kawasan komoditi basis perkebunan adalah: (a). Pelaksanaan kegiatan pemantapan tata batas kawasan,

termasuk deleniasi kawasan konflik fungsi (b). Pengamanan hutan dengan melibatkan partisipatif masyarakat, (c). Pemanfaatan kawasan lindung dengan kegiatan bernilai ekonomi, (d). Pengembangan hutan kemasyarakatan (agrisilvikultur atau agrisilvopastur), (e). Pembinaan masyarakat melalui sistem pertanian konservasi secara terpadu (antar produksi dan perlindungan kawasan).

6.2 Saran

1. Kriteria/indikator yang digunakan dalam proses CP dapat dikembangkan untuk berbagai konteks perencanaan yang memerlukan pengambilan keputusan secara spasial, sehingga berbagai pola dan model kombinasi dapat dikembangkan baik pada tingkat wilayah (makro) maupun tingkat detil.

2. Dalam konteks perencanaan wilayah, model CP dapat digunakan dalam menentukan pola ruang wilayah hingga diperoleh alokasi lahan yang sesuai kebutuhan.

Acztl J, Saaty TL. 1983. Procedures for Synthesizing Ratio Judgements. J. Math. Psych. 27: 93-102.

Anwar A. 2005. Ketimpangan Pembangunan Wilayah dan Pedesaan: Tinjauan Kritis. Bogor: P4W Press.

Alessio I, Ashraf L. 2009. Analytic Hierarchy Process and Expert Choice: Benefits and Limitations, ORInsight, 22(4): 201–220.

Arciniegas G, Janssen G, Omtzigt N. 2011. Map-based Multicriteria Analysis to Support Interactive Land Use Allocation. International Journal of Geographical Information Science 25: 1931-1947.

Baja S, Chapman DM, Dragovich D. 2001. A Conceptual Model for Assessing Agricultural Land Suitability at A Catchment Level Using A Continuous Approach in GIS. Proceedings of the Geospatial Information and Agriculture Conference, Sydney, 17-19 July 2001. Sydney: New South Wales Department of Agriculture. hlm 828-841.

Baja S, Chapman DM, Dragovich, D. 2002a. A Conceptual Model for Defining and Assessing Land Management Units Using a Fuzzy Modeling Approach in GIS Environment. Environmental Management 29(5): 647–661

Baja S, Chapman DM, Dragovich, D. 2002. Using GIS Based Continuous Method for Assessing Agricultural Land Use Potential in Sloping Area. Environment and Planning B: Planning and Design 29: 3-20.

Baja S, Chapman DM, Dragovich D. 2006. Spatial-based Compromise Programming for Multiple Criteria Decision Making Modeling in Land Use Planning. Environmental Modelling and Assesment 12: 171-184.

Baja S. 2012. Metode Analitik Evaluasi Sumberdaya Lahan: Aplikasi GIS, Fuzzy Set, dan MCDM. Makassar: Identitas Universitas Hasanuddin.

[Bappeda Jabar] Badan Perencanaan Perencanaan Pembangunan Daerah Provinsi Jawa Barat. 1999. Studi Penggunaan Lahan Proyek Konservasi dan Pengelolaan DAS Cimanuk Hulu. [Laporan tidak dipublikasikan]. Kerjasama Bappeda Provinsi Jawa Barat dan Lembaga Penelitian Institut Pertanian Bogor. [Bappeda Sulbar] Badan Perencanaan Pembangunan Daerah Provinsi Sulawesi

Barat. 2008. Kajian Bantuan Teknis Penyusunan Sistem lnformasi Lahan di Kabupaten Mamuju Utara Provinsi Sulawesi Barat. [Laporan tidak dipublikasikan]. Mamuju: Bappeda Provinsi Sulbar.

Bellman R, Zadeh LA. 1970. Decision-making in A Fuzzy Environment.

Management Science 17B:141-164.

Bergman SC, Coffield DQ, Talbot JP, Garrard RA. 1996. Tertiary Tectonic and Magmatic Evolution of Western Sulawesi and the Makassar Strait, Indonesia: Evidence for a Miocene Continent-Continent Collision. In: Hall R, Blundell D, (Editor). Tectonic Evolution of Southeast Asia, Geological Soc. Special Publication No. 106. London. pp 391-429.

Bevilacqua M, D’Amore A, Polonara F. 2004. A Multi-Criteria Decision Approach to Choosing The Optimal Blanching-Freezing System. Journal of Food Engineering 63: 253-263.

[BPS] Badan Pusat Statistik Kabupaten Mamuju Utara. 2012. Kabupaten Mamuju

Utara dalam Angka 2012. Mamuju Utara: BPS Kab. Mamuju Utara.

[BPS] Badan Pusat Statistik. 2011. Data Potensi Desa. Jakarta: Badan Pusat Statistik.

[BPS] Badan Pusat Statistik Provinsi Sulawesi Barat. 2011. Provinsi Sulawesi Barat dalam Angka 2011. Mamuju: BPS Provinsi Sulawesi Barat.

Braak C. 1929. On the Climate of and Meteorological Research in the Netherlands Indies, Kon. Ak. Wet. ICO Committee, pp 50-64. In: Honig P, Verdoorn F, (Editor). Science and Scientists in the Netherlands. New York. http://www.knaw.nl/CFdata/indonesia/honig_verdoorn_contents.cfm. [8 April 2012].

Braimoh AK, Vlek PLG, Stein A. 2004. Land Evaluation for Maize Based on Fuzzy Set and Interpolation. Environmental Management 33: 226-238.

Brockhaus M, Obidzinski K, Dermawan A, Laumonier Y, Luttrell C. 2012. An Overview of Forest and Land Allocation Policies in Indonesia: Is The Current Framework Sufficient to Meet The Needs of REDD+?. Forest Policy and Economics 18: 30–37.

Bronsveld K, Huizing H, Omakupt M. 1994. Improving Land Evaluation and Land Use Planning. ITC Journal 4: 359-365.

Burrough PA, MacMillan RA, van Deursen W. 1992. Fuzzy Classification Methods For Determining Land Suitability From Soil Profile Observations And Topography. Journal of SoilScience 43:193–210.

Burrough PA, McDonnel RA. 1998. Principle of Geographical Information Systems. New York: Oxford University Press Inc.

Burrough PA. 1989. Fuzzy Mathematical Methods for Soil Survey and Land Evaluation. Journal of Soil Science 40: 477-492.

Burrough PA. 1996. Natural Object with Inderminate Boundaries. In: Burrough PA, Frank AU, (Editor). Geographic Object with Indetermine Boundaries. London: Taylor and Francis Ltd.

Carver SJ. 1991. Integrating Multi-criteria Evaluation with Geographical Information Systems. International Journal of Geographical Information Systems 5: 321-339.

Cay T, Uyan M. 2013. Evaluation of Reallocation Criteria in Land Consolidation Studies Using The Analytic Hierarchy Process (AHP). Land Use Policy 30: 541– 548.

Chen Y, Yu J, Shahbaz K, Xevi E. 2009. A GIS-Based Sensitivity Analysis of Multi-Criteria Weights. Australia. 18th World IMACS/MODSIM Congress; Cairns, 13-17 Jul 2009.

Davidson DA, Theocharopoulos SP, Bloksma RJ. 1994. A Land Evaluation Project in Greece Using GIS and Based on Boolean and Fuzzy Set Methodologies. International Journal of Geographic Information Systems

8:369-384.

de Gruijter JJ, Walvoort DJJ, Bragato G. 2011. Application of Fuzzy Logic to Boolean Models For Digital Soil Assessment. Geoderma 166: 15–33

de Gruijter JJ, Walvoort DJJ, van Gaans PFM. 1997. Continuous Soil Maps - A Fuzzy Set Approach to Bridge The Gap Between Aggregation Levels of Process and Distribution Models. Geoderma 77: 169–195.

Dent D, Young A. 1981. Soil Survey and Land Evaluation. London: George Allen and Unwin Limited.

Dewar RB, Anwar S, Parker J, Chapman GA, Houghton PD. 1996. Modelling for Natural Resources Assessment. Micellaneous Report No. 4. Sydney: Department of Land and Water Conservation.

Diamond JT, Wright JR. 1988. Design of An Integrated Spatial Information System for Multiobjective Landuse Planning. Environment and Planning B: Planning and Design 15: 205-214.

Djaenudin D, Marwan H, Subagyo H, Hidayat A. 2003. Petunjuk Teknis Evaluasi Lahan untuk Komoditas Pertanian. Edisi Pertama. Bogor: Balai Penelitian Tanah, Pusat Penelitian dan Pengembangan Tanah dan Agroklimat Badan Litbang Pertanian Kementerian Pertanian.

Dobermann A, Oberthür T. 1997. Fuzzy Mapping of Soil Fertility - A Case Study on Irrigated Riceland in The Philippines. Geoderma 77: 317–339.

Duckstein L, Opricovic S. 1980. Multi-objective Optimization in River Basin Development. Water Resources Research 16: 14-20.

Duke JM, Aull-Hyde R. 2002. Methods Identifying Public Preferences for Land Preservation Using the Analytic Hierarchy Process. Ecological Economics 42: 131–145

[FAO]. Food and Agricultural Organization. 1976. A Framework for Land Evaluation. Soils Bulletin 32. FAO: Rome.

[FAO]. Food and Agricultural Organization. 1983. Guidelines: Land Evaluation for Rainfed Agriculture. Soils Bulletin 52. FAO: Rome.

[FAO]. Food and Agricultural Organization. 1993. Guidelines for Land-Use Planning (FAO Development Series No. 1). FAO: Rome. Italy.

Friedmann J, Douglass M. 1976. Agropolitan Development: Toward A New Strategy for Regional Planning in Asia. Paper presented on: Seminar on Industrialization Strategies and Growth Pole Approach to Regional Planning and Development. Nagoya, 4-13 Nov 1975.

Fritz S, See L. 2005. Comparison of Land Cover Maps Using Fuzzy Agreement.

International Journal of Geographical Information Science, 19: 787–807

Hardjowigeno S, Widiatmaka. 2007. Evaluasi Kesesuaian Lahan dan Perencanaan Tataguna Lahan. Yogyakarta: Gadjah Mada University Press.

Hengl T, MacMilan RA. 2009. Geomorfometry – A Key to Landscape Mapping and Modeling. In Hengi T, Reuter HI, (Editor). Geomorphometry - Concepts, Software, Application. Development in Soil Science 33: 433-460. Hungary: Elsevier.

Hwang CL, Yoon K. 1981. Multiple Attribute Decision Making. Lecture Notes in Economics and Mathematical Systems. Heidelberg, Berlin: Springer-Verlag. Jankowski P, Nyerges T. 2001. Geographic Information Systems for Group

Decision Making: Towards a Participatory, Geographic Information Science. New York: Taylor and Francis.

Jankowski P, Richard L. 1994. Integration of GIS-based Suitability Analysis and Multicriteria Evaluation in A Spatial Decision Support System for Route Selection. Environment and Planning B: Planning and Design 21: 323–340. Jankowski P. 1995. Integrating Geographical Information Systems and Multiple

Criteria Decision Making Methods. International Journal of Geographical Information Science, 9: 251-273.

Janssen R, Rietveld P. 1990. Multi-Criteria Analysis and Geographical Information Systems: An Application To Agricultural Land Use In the Netherlands. In: Scholten HJ, Stillwell JCH (Editors). Geographical Information Systems for Urban and Regional Planning. Dordrecht: Kluwer Academic Publishers.

Jones JW, Hoogenboom G, Porter CH, Boote KJ, Batchelor WD, Hunt LA, Wilkens PW, Singh U, Gijsman AJ, Ritchie JT. 2003. The DSSAT cropping system model. European Journal of Agronomy 18: 235-265.

Kahraman C. 2008. Multi-criteria Decision Making Methods and Fuzzy Sets. In Kahraman C (Editor). Fuzzy Multi-Criteria Decision-Making Theory and Application with Recent Development. New York: Spriger Science + Business Media.

Kalogirou S. 2002. Expert systems and GIS: An Application of Land Suitability Evaluation. Computers, Environment and Urban Systems 26: 89–112.

Katili JA. 1978. Past and Present Geotectonic Position of Sulawesi Indonesia.

Tectonophysics 45: 289–322.

[KemPU] Kementerian Pekerjaan Umum. 2007. Undang-Undang No. 26 Tahun 2007, Tentang Penataan Ruang. Lembaran Negara Republik Indonesia Tahun 2007 Nomor 68 Tambahan Lembaran Negara Republik Indonesia Nomor 4725. Jakarta: Kementerian PU.

Klingebiel AA, Montgomery PH. 1961. Land Capability Classification. Soil Conservation Service Handbook 210. U.S. Department of Agriculture, Washington, DC.

Kumadewi S, Purnomo H. 2010. Aplikasi Logika Fuzzy untuk Pendukung Keputusan. Yoyakarta: Graha Ilmu..

Liu JG, Mason PJ. 2009. Essential Image Processing and GIS for Remote Sensing. United Kingdom: Willey Blackwell, A John Willey and Sons, Ltd.

Malczewski J. 2004. GIS-based Land-Use Suitability Analysis: A Critical Overview. Progress in Planning 62: 3–65.

Malczewski J. 2006. Integrating Multicriteria Analysis and Geographic Information Systems: The Ordered Weighted Averaging (OWA) Approach.

Int. J. Environmental Technology and Management 6: 7-19.

Mangoensoekarjo S. 2007. Manajemen Tanah dan Pemupukan Budidaya Perkebunan. Yogyakarta: Gadjah Mada University Press.

Marinoni O. 2004. Implementation of The Analytical Hierarchy Process with VBA in ArcGIS. Computers and Geosciences 30: 637–646.

Mc Bratney AB, Odeh IOA. 1997. Application of Fuzzy Sets in Soil Science: Fuzzy Logic, Fuzzy Measurements and Fuzzy Decisions. Geoderma 77: 85-113.

Mengel K. 2008. Limiting Factors and Liebig’s Principle. Encyclopedia of Ecology, hlm 2184-2187.

Monmonier M. 1982. Computer-Assisted Cartography: Principles and Prospects. USA: Prentice-Hall, Inc.

Obiechina COB. 1986. An Impact Analysis of The Development of The Rural Road System on The Production of Oil Palm in Imo State, Nigeria.

Agricultural Systems 19: 141-152.

Phua M, Minowa M. 2005. A GIS Based Multi-Criteria Decision Making Approach to Forest Conservation Planning at A Landscape Scale: A Case Study in The Kinabalu Area, Sabah, Malaysia. Landscape and Urban Planning

71: 207-222.

Pradan PK. 2003. Manual for Urban Rural Linkage and Rural Development Analysis. Kathmandu: New Hire Book Enterprises.

Prakash TN. 2003. Land Suitability Analysis for Agricultural Crops: A Fuzzy Multicriteria Decision Making Approach. [Thesis]. The Netherlands: International Intitute for Geo-Information Science and Earth Observation. Enschede.

Pereira JMC, Duckstein L. 1993. A Multiple Criteria Decision-Making Approach to GIS-Based Land Suitability Evaluation. International Journal of Geographical Information Systems 7(5): 407–424.

Prodanovic P, Simonovic SP. 2003. Fuzzy Compromise Programming for Group Decision Making. IEEE Transactions On Systems, Man, And Cybernetics - Part A: Systems And Humans 33: 358-365.

Rabus B, Eineder M, Roth A, Bamler R. 2003. The Shuttle Radar Topography Mission – A New Class of Digital Elevation Model Acquired by Spaceborn Radar. Photogrammetric Engineering and Remote Sensing 57: 241-262.

Ramanathan R. 2006. A Note on The Use of The Analytic Hierarchy Process for Environmental Impact Assessment. Journal of Environmental Management 63: 27–35.

Romero C, Rehman T. 2003. Multiple Criteria Analysis for Agricultural Decisions. Amsterdam: Elsevier.

Rondenelli DA. 1985. Applied Methods of Regional Analysis The Spatial Dimension of Development Policy. London: Westview Press.

Rossiter DG. 1996. A Theoretical Framework for Land Evaluation. Geoderma 72: 162-190.

Rustiadi E, Saefulhakim S, Panuju DR. 2009. Perencanaan dan Pengembangan Wilayah. Jakarta: Cresspent Press dan Yayasan Obor Indonesia.

Saaty RW. 1987. The Analytic Hierarchy Process-What It Is and How It Is Used.

Mathl Modelling 9: 161-176.

Saaty TL, Sodenkamp M. 2008. Making Decisions in Hierarchic and Network Systems. Int. J. Applied Decision Sciences 1: 24–79.

Saaty TL. 1977. A Scaling Method for Priorities in Hierarchical Structures.

Journal of Mathematical Psychology 15: 231–281.

Saaty TL. 1980. The Analytic Hierarchy Process, Planning, Priority Setting, Resource Allocation. USA: McGraw-Hills Inc.

Saaty TL. 1986. Axiomatic Foundation of The Analytic Hierarchy Process.

Management Science 32: 841–855.

Saaty TL. 1989. Group decision making and The AHP. In Golden BL, Wasil EA, Harker PT, (Editors). The Analytic Hierarchy Process: Applications and Studies. Heidelberg: Springer pp: 59-67.

Saaty TL. 1996. The Analytic Network Process. Pittsburg: RWS Publications. Saaty TL. 2000. Fundamentals of Decision Making and Priority Theory with The

Analytic Hierarchy Process. Pittsburg: RWS Publications.

Saaty TL. 2003. Decision-making with the AHP: Why is The Principal Eigenvector Necessary. European Journal of Operational Research 145: 85–

91.

Saaty TL. 2008. Decision Making with The Analytic Hierarchy Process. Int. J. Services Sciences 1: 83–98

Santé I, Crecente R, Miranda D. 2008. GIS-based Planning Support System for Rural Land-Use Allocation. Computers and Electronics in Agriculture 63: 257–273.

Sicat RS, Carranza EJM, Nidumolu UB. 2005. Fuzzy Modeling of Farmers' Knowledge for Land Suitability Classification. Agricultural Systems 83: 49-75. Shiddiq D. 2011. Analisis Multikriteria Spasial dalam Penentuan Ketersediaan

Lahan Sawah di Kabupaten Ciganjur. [Tesis]. Sekolah Pascasarjana, Institut Pertanian Bogor.

Simanjuntak TO, Surono, Sukido. 1993. PetaGeologi Lembar Kolaka, Sulawesi, skala 1 : 250.000. Bandung: Pusat Penelitian dan Pengembangan Geologi.

Simonovic SP, Nirupama A. 2005. A Spatial Multi-Objective Decision-Making Under Uncertainty for Water Resources Management. Journal of Hydroinformatics. 7: 117-133

Simonovic SP. 2003. A Spatial Fuzzy Compromise Programming for Management of Natural Disasters. Paper Series No. 24. London: Institute for Catastrophic Loss Reduction.

Strager MP, Rosenberger RS. 2007. Aggregating High-Priority Landscape Areas to The Parcel Level: An Easement Implementation Tool. Journal of Environmental Management 82: 290–298.

Stöckle CO, Donatelli M, Nelson R. 2003. CropSyst, a Cropping System Simulation Model. European Journal of Agronomy 18: 289-307.

Sui DZ. 1992. A Fuzzy GIS Modeling Approach for Urban Land Evaluation

Computers, Environment and Urban Systems 16: 101-115.

Sukamto R. 1973. Peta Geologi Tinjau Lembar Palu, Sulawesi, skala 1: 250.000. Bandung: Pusat Penelitian dan Pengembangan Geologi.

Sukamto R. 1975. Peta Geologi Lembar Ujungpandang, Sulawesi Selatan, Skala 1:1,000,000. Bandung: Pusat Penelitian dan Pengembangan Geologi.

Sukido D, Satria, Koesoemadinata S. 1997. Peta geologi Lembar Enrekang Sulawesi, skala 1:100.000. Bandung: Pusat Penelitian dan Pengembangan Geologi.

Sys C. 1985. Land Evaluation, Part 1, 2,3. Ghent: State University of Ghent. Tang H, Debaveye J, Ruan D, Van Ranst E. 1991. Land Suitability Classification

Based on Fuzzy Set Theory. Pedologie 3: 277-290.

Tang H, Van Ranst E, Sys C. 1992. An Approach to Predict Land Production Potential for Irrigated and Rainfed Winter Wheat in Pinan County, China. Soil Technology 5: 213-224.

Tarigan R. 2005. Ekonomi Regional : Teori dan Aplikasi. Edisi Revisi. Medan: Bumi Aksara.

Tecle A, Yitayew M. 1990. Preference Ranking of Alternative Irrigation Technologies Via A Multicriterion Decision Making Procedure. American Society of Agricultural Engineers 33: 1509-1517.

Tecle A, Fogel MM, Duckstein L. 1988. Multicriterion Analysis of Forest Watershed Management Alternatives. Water Resources Bulletin-American Water Resources Association 24: 1169-1177.

Tkach RJ, Simonovic SP. 1997. A New Approach to Multi-criteria Decision Making in Water Resources. Journal of Geographic Information and Decision Analysis 1: 25-43

Triantafilis J, Ward WT, McBratney AB. 2001. Land Suitability Assessment in The Namoi Valley of Australia, Using a Continuous Model. Amsterdam Journal of Soil Research 39: 273–290.

Tung CT, Chao H, Julian P. 2012. Group Geometric Consistency Index of Analytic Hierarchy Process (AHP). African Journal of Business Management 6: 7659-7668.

van den Berg HA. 1998. Multiple Nutrient Limitation In Unicellulars: Reconstructing Liebig's Law. Mathematical Biosciences 149: 1-22.

van Ittersum MK, Rabbinge R, van Latesteijn HC. 1998. Exploratory Land Use Studies and Their Role in Strategic Policy Making. Agric. Syst. 58(3): 309-330. Van Lanen HA. 1991. Qualitative and Quantitative Physical Land Evaluation: An Operational Approach. [Disertasi]. The Netherlands: Agricultural University Wageningen.

van Niekerk A. 2010. A Comparison of Land Unit Delineation Techniques for Land Evaluation in The Western Cape, South Africa. Land Use Policy 27: 937-945.

Von Thunen JH. 1842. Von Thunen’s Isolated State. Wartenberg CM, (Penerjemah); Hall P, (Editor). London: Pergamon; 1966. Terjemahan dari:

Der Isolierte Staat.

Verheye W, Nachtergaele F, Koohafkan P. 2010. The FAO Guidelines for Land Evaluation. Landuse, Landcover and Soil Science. http://www.eolss.net/Eolss-sampleAllChapter.aspx [1 Mei 2012].

Weber A. 1929. Theory of The Location of Industries. Friedrich CJ, (Penerjemah). London: The University of Chicago Press. Terjemahan dari: Über den Standort der Industrie.

Widodo E. 2007. Kajian Pengaruh Jalan Terhadap Kinerja Perekonomian Wilayah. [Tesis]. Sekolah Pascasarjana, Institut Teknologi Bandung.

Xu Z. 2000. On Consistency of The Weighted Geometric Mean Complex Judgement Matrix in AHP. European Journal of Operational Research 126: 683-687.

Yang J, Yang Y, Tang W. 2012. Development of Evaluation Model for Intensive Land Use in Urban Centers. Frontiers of Architectural Research 1: 405–410. Zadeh LA. 1965. Fuzzy Sets. Information and Control 8: 338-353.

Zeleny M.1982. Multiple Criteria Decision Making. New York: McGraw-Hill.

Zhu A. 1997. A Similarity Model for Representing Soil Spatial Information.

Lampiran 1 Produk Domestik Regional Bruto Kabupaten Mamuju Utara Atas Dasar Harga Konstan Tahun 2000 - 2010 (Juta Rp) LAPANGAN USAHA 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 1. Pertanian 180 345.39 185 363.94 193 662.84 205 520.08 209 089.98 212 617.46 218 112.91 222 740.13 231 158.32 284 374.86 a.Bahan Makanan 21 407.07 22 255.10 22 993.38 23 575.20 24 366.76 25 090.83 25 638.94 27 187.60 29 318.54 38 825.18 b.Perkebunan 151 952.33 155 803.74 163 125.21 174 132.57 176 629.47 178 852.24 183 387.44 185 680.24 191 319.69 234 234.20 c.Peternakan 1 733.17 1 817.86 1 873.85 1 939.90 2 013.95 2 073.98 2 151.81 2 546.71 2 738.28 2 853.09 d.Kehutanan 3 616.08 3 746.08 3 865.17 3 988.65 4 111.79 4 274.20 4 419.33 4 581.26 4 790.99 4 700.06 e.Perikanan 1 636.74 1 741.16 1 805.23 1 883.76 1 968.01 2 326.21 2 515.39 2 744.32 2 990.82 3 762.34 2. Pertambangan dan Penggalian 1 103.03 1 177.00 1 264.45 1 347.01 1 421.18 2 441.56 2 818.41 3 507.57 4 005.48 4 532.73 3. Industri Pengolahan 93 025.66 103 359.29 113 479.01 122 651.59 134 908.63 144 059.18 160 571.36 170 179.23 181 833.84 253 190.96

a. Industri Migas 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

b. Industri Non Migas 93 025.66 103 359.29 113 479.01 122 651.59 134 908.63 144 059.18 160 571.36 170 179.23 181 833.84 253 190.96 4. Listrik Gas dan Air Bersih 79.05 97.19 120.34 140.85 163.24 214.24 317.42 428.18 523.40 786.32 5. Bangunan 3 281.14 3 537.85 3 817.88 4 060.37 4 300.89 9 976.81 12 044.70 16 812.08 23 937.67 24 878.01 6. Perdagangan, hotel, dan restoran 5 337.48 5 665.00 6 063.55 6 604.81 7 021.92 8 737.03 9 588.32 10 083.24 10 874.02 11 988.19 7. Pengangkutan dan komunikasi 1 407.86 1 495.72 1 604.55 1 700.32 1 831.80 2 256.06 2 574.08 3 073.87 3 532.58 23 408.25 8. Keuangan persewaan dan jasa

perusahaan 5 440.35 5 834.75 6 253.14 7 169.31 10 695.34 12 040.96 14 401.70 18 360.80 23 333.74 33 157.28 9. Jasa-jasa 19 205.34 20 333.62 20 539.93 21 146.49 22 743.13 31 549.93 35 042.62 44 784.73 53 266.50 74 920.66 a. Pemerintahan Umum 19 089.98 20 213.26 20 416.21 21 018.40 22 609.88 31 410.89 34 885.37 44 607.74 53 073.27 74 094.12 b. Swasta 115.36 120.36 123.72 128.09 133.25 139.04 157.25 177.00 193.23 826.54 PDRB DENGAN MIGAS 309 225.30 326 864.36 346 805.69 370 340.83 392 176.11 423 893.21 455 471.52 489 969.83 532 465.54 711 237.26 PDRB TANPA MIGAS 309 225.30 326 864.36 346 805.69 370 340.83 392 176.11 423 893.21 455 471.52 489 969.83 532 465.54 711 237.26

Lampiran 2 Analisis PHA untuk bobot kepentingan kriteria evaluasi lahan 1. Matriks penilaian berpasangan dari sejumlah responden

Responden Evaluasi Lahan

Tanah - Iklim Tanah - Lereng Iklim - Lereng

1 1/8 1/7 3 2 1/6 1/3 5 3 1/8 1/7 1/3 4 1/5 1/3 5 5 1/4 1/3 6 6 1/6 1/5 3 7 1/4 1/3 5 8 1/6 1/5 5 9 1/5 1/3 5 GEOMEAN 1/6 1/4 3 3/8

2. Matriks berpasangan rata-rata geometrik

Tujuan Tanah Iklim Lereng

Tanah 1 1/6 1/4

Iklim 5 3/5 1 3 3/8

Lereng 4 2/7 1

Jumlah 10.670 1.475 4.618

3. Perhitungan vektor prioritas (bobot kepentingan)

Tujuan Tanah Iklim Lereng Bobot

Tanah 0.09 0.12 0.05 0.089

Iklim 0.53 0.68 0.73 0.645

Lereng 0.38 0.20 0.22 0.266

Jumlah 1.00 1.00 1.00 1.000

4. Pengujian konsistensi

Tujuan Tanah Iklim Lereng Jumlah

Tanah 0.09 0.11 0.07 0.270 Iklim 0.50 0.64 0.90 2.043 Lereng 0.36 0.19 0.27 0.820

5. Perhitungan nilai lamda, indeks konsistensi, dan rasio konsistensi Tanah Iklim Lereng 3.020 3.168 3.081 λmax 3.090 CI 0.04 CR 0.078

Lampiran 3 Analisis PHA untuk bobot kepentingan indikator Compromise Programming

1. Matriks penilaian berpasangan dari sejumlah responden

Re spo n d en IK L * -Ja la n IK L -Pa sa r IK L -En er g i IK L -k o m o d iti IK L -Pem u k im a n J a la n -P a sa r J a la n -E n er g i J a la n -k o m o d iti J a la n -Pem u k im Pa sa r -En er g i Pa sa r - k o m o d it i Pa sa r -Pem u k im En er g i-Pre fe r En er g i-Pem u k im Pre fe r-Pem u k im 1 1/7 1/7 1/5 1/3 1/2 1/2 1/2 3 5 1/4 2 5 3 5 1/5 2 1/5 1/5 1/5 1/3 1/7 1/3 1/3 3 1/3 1/3 5 1/5 7 1/7 1/7 3 1/8 1/3 1/3 1/4 1/3 5 3 4 4 1/4 3 1/4 3 1/2 1/6 4 1/4 1/7 1/8 1/3 1/3 1/3 1/4 4 1/4 1/5 1/4 1/3 4 1/6 1/5 5 3 4 6 3 6 5 3 2 3 3 2 4 1/3 4 1/6 6 1/5 1/7 1/8 1/6 1/4 2 4 1/4 5 4 3 3 5 2 2 7 1/3 1/4 1/3 1/8 1/6 3 2 1/6 5 1/4 1/4 1/2 4 3 4 G EO MEAN 2/7 2/7 1/3 1/3 2/5 1 1/3 1 1/6 1 3/7 2 1/2 1 2/5 1 2 8/9 1 2/5

Keterangan: * IKL = indeks kesesuaian lahan 2. Matriks berpasangan rata-rata geometrik

Tujuan IKL Jalan Pasar Energi Komoditi Pemukiman IKL 1.000 0.291 0.295 0.329 0.345 0.411 Jalan 3.431 1.000 1.354 1.170 1.426 1.993 Pasar 3.390 0.739 1.000 0.536 1.413 0.906 Energi 3.040 0.855 1.864 1.000 2.889 1.042 Komoditi 2.901 0.701 0.708 0.346 1.000 0.386 Pemukiman 2.433 0.502 1.104 0.960 2.589 1.000 Jumlah 16.195 4.088 6.325 4.341 9.662 5.738

3. Perhitungan vektor prioritas (bobot kepentingan)

Tujuan IKL Jalan Pasar Energi Komoditi Pemukiman Bobot

IKL 0.06 0.07 0.05 0.08 0.04 0.07 0.060 Jalan 0.21 0.24 0.21 0.27 0.15 0.35 0.239 Pasar 0.21 0.18 0.16 0.12 0.15 0.16 0.163 Energi 0.19 0.21 0.29 0.23 0.30 0.18 0.234 Komoditi 0.18 0.17 0.11 0.08 0.10 0.07 0.119 Pemukiman 0.15 0.12 0.17 0.22 0.27 0.17 0.185 Jumlah 1.00 1.00 1.00 1.00 1.00 1.00 1.000 4. Pengujian konsistensi

Tujuan IKL Jalan Pasar Energi Komoditi Pemukiman Jumlah

IKL 0.06 0.07 0.05 0.08 0.04 0.08 0.372 Jalan 0.21 0.24 0.22 0.27 0.17 0.37 1.479 Pasar 0.20 0.18 0.16 0.13 0.17 0.17 1.005 Energi 0.18 0.20 0.30 0.23 0.34 0.19 1.461 Komoditi 0.18 0.17 0.12 0.08 0.12 0.07 0.729 Pemukiman 0.15 0.12 0.18 0.22 0.31 0.19 1.164

5. Perhitungan nilai lamda, indeks konsistensi, dan rasio konsistensi IKL 6.154 Jalan 6.183 Pasar 6.181 Energi 6.252 Preferensi 6.138 Pemukiman 6.286 λmax 6.199 CI 0.040 CR 0.032

Lampiran 5 Kriteria kesesuaian lahan tanaman kelapa dalam (Cocos nucifera L.) Persyaratan penggunaan/

karakteristik lahan

Kelas kesesuaian lahan

S1 S2 S3 N

Temperatur (tc)

Temperatur rerata (oC) 25-28 28-32 32-35 > 35 23-25 20-23 < 20

Ketersediaan air (wa)

Curah hujan (mm) 2000-3000 1300-2000 1000-1300 <1000 3000-4000 4000-5000 >5000 Lamanya bulan kering (bln) 0-2 2-4 4-6 >6 Kelembaban (%) >60% 50-60 <50

Ketersediaan oksigen (oa)

Drainase baik, sedang agak terhambat terhambat, agak cepat sangat terhambat, cepat Media perakaran (rc)

Tekstur halus, agak

halus, sedang

agak kasar sangat halus kasar Bahan kasar (%) <15 15-35 35-55 >55 Kedalaman tanah (cm) >100 75-100 50-75 <50

Gambut

Ketebalan (cm) <60 60-140 140-200 >200 Ketebalan (cm), jika ada

sisipan bahan mineral/pengkayaan kematangan <140 saprik 140-200 saprik, hemik 200-400 hemik, fibrik >400 fibrik Retensi hara (nr) KTK liat (cmol) - - - - Kejenuhan basa (%) >20 ≤20 pH H2O 5.2-7.5 4.8-5.2 7.5-8.0 <4.8 >8 C-organik (%) >0.8 ≤0.8 Toksisitas (xc) Salinitas (ds/m) <12 12-16 16-20 >20 Sodisitas (xn) Alkalinitas/ESP (%) - - - - Bahaya sulfidik Kedalaman sulfidik (cm) >125 100-125 60-100 <60

Bahaya erosi (eh)

Lereng (%) <8 8-16 16-30 >30

Bahaya erosi sangat rendah rendah-sedang

berat sangat berat

Bahaya banjir (fh)

Genangan FO - F1 >F1

Penyiapan lahan (lp)

Batuan di permukaan <5 5-15 15-40 >40 Singkapan batuan (%) <5 5-15 15-25 >25 Sumber: Djaenuddin et al. (2003).

Lampiran 6 Kriteria kesesuaian lahan tanaman kelapa sawit (Elaeis guinensis

JACK.) Persyaratan penggunaan/

karakteristik lahan

Kelas kesesuaian lahan

S1 S2 S3 N

Temperatur (tc)

Temperatur rerata (oC) 25-28 22-25 20-22 <20 28-32 32-35 >35

Ketersediaan air (wa)

Curah hujan (mm) 1700-2500 1450-1700 1250-1450 <1250 2500-3500 3500-4000 >4000 Lamanya bulan kering (bln) <2 2-3 3-4 >4

Ketersediaan oksigen (oa)

Drainase baik, sedang agak terhambat terhambat, agak cepat sangat terhambat, cepat Media perakaran (rc)

Tekstur halus, agak

halus, sedang

- agak kasar kasar Bahan kasar (%) <15 15-35 35-55 >55 Kedalaman tanah (cm) >100 75-100 50-75 <50

Gambut

Ketebalan (cm) <60 60-140 140-200 >200 Ketebalan (cm), jika ada

sisipan bahan