• Tidak ada hasil yang ditemukan

U ti n51 gn ira eh S )g ni dn e B dn a( no isr oT dn a

N/A
N/A
Protected

Academic year: 2024

Membagikan "U ti n51 gn ira eh S )g ni dn e B dn a( no isr oT dn a"

Copied!
28
0
0

Teks penuh

(1)

U ti n 5 1 g

n ir a e h

S a n d T o r s i o n ( a n d B e n d i n g )

a

P lu A. Lagac © e 2001

(2)

T I

M - 1 26 0 .

s u h

T ,r f e a w h a v e c o n c e n rt a t e d n o e t h b e n d i n g f o s h e ll m

a e

b s. H o w e v e ,r i n t h e g e n e r a l c a s e a b e a m s i s u b j e c t e d : t o

• axial load, F

• bending moments, M

• shear forces, S

• torque t(orsional moments ,) T s

e l p m a x

E fo general aerospace she ll beam structures ll e

g n it c e n n o

c nodes

ti n

U 51 - 2

a F ll, 20 20

e r u g i

F 1 5.1

c ri A

a

P lu A. Lagac © e 2001

(3)

e z il a e d

I et h cross-sec iton fo et h she ll beam oint ot w pa trs:

• P sa tr that ca rry extensional s rtess, σx x (and thus et h bending da n l

a i x

a loads)

• Pa trs that ca rry shear s rtess σx s (and thus et h shear loads and )

s e u q r o

t

o w

T examples a n… gai

• h igh aspect r oa it w hing w ti semi-monocoque cons rtuc iton e

t o

N s:

u q o c o n o

m e nco s rtuc iton

• – lla ni eo n piece w tihout internal rfaming

• – rfom French “coque” meaning “eggshell”

• – “mono” = eo n piece i

m e

s -monocoque

– s rtessed ns ki cons rtuc iton tiw h internal rfamework – s t lli have “eggshell” ot ca rry shear s rtesses, σx s

– internal rfamework ot ca rry axial s rtess, σx x

ti n

U 51 - 3

a

P lu A. Lagac © e 2001

(4)

ll a F , 02 2 0

n o it a t n e s e r p e

R fo wing semi-monocoque construc iton b

ir b

e

w + s e g n a

lf = spar

b e w e

z il a e d

I st hi sec iton :a s n

o it a z il a e d

I fo wing semi-monocoque construc iton

ti n

U 51 - 4

T I

M - 1 26 0 .

e r u g i

F 1 5.2

s e g n a lf

skin

s r e n e ff it s

e r u g i

F 1 5.3

a

P lu A. Lagac © e 2001

(5)

l a F l, 02 2 0

→ Skins da n webs ea r assumed ot ca rry lo y n shear s rtess σx s

→ Flanges da n st irngers ea r assumed ot ca rry lo y n axial s

s e rt

s σx x

e c a p

S hab tiat

e r u g i

F 15.4 Representa iton fo space hab tiat semi-monocoque n

o it c u r t s n o

c

s e g n a lf spar

ll a

w st fifeners e

z il a e d

I sa rf o wing:

a

P lu A. Lagac © e 2001 T

I

M - 1 26 0 .

ll a w

ti n

U 51 - 5

(6)

ll a F , 02 2 0

n o it a z il a e d

I fo space hab tiat semi-monocoque construc iton

r e t u

O ns dki a n wa lls ea r assumed ot ca rry o nly shear s rtess σx s

s e g n a l

F da n s it ffeners ea r assumed ot ca rry lo y an a l xi s rtess σx x

e z y l a n

A these cross-sec itons sa a beam under combined bending, shea ,r d

n

a torsion. Ut ilize tS . Venant assump itons:

1. There ea r enough closely spaced ir sgid ir ob t preserve et h shape f

o et h cross-sec iton r( o enough s it ffness ni et h internal bracing ot o

d such)

2. T he cross-sec itons ea er rf oe t warp to - fu o -plane tr

a t

S ot develop et h basic equa itons yb looking ta et h m ost basic case:

a

P lu A. Lagac © e 2001 T

I

M - 1 26 0 .

e r u g i

F 1 5.5

ti n

U 51 - 6

(7)

e l g n i

S C e ll “ B o x B e a m ”

n o it a t n e s e r p e

R fo geometry fo single c xe ll b eo b ma

s u l u d o

m -weighted centroid of e

g n a

lf da n s it ffener area used s

a o irgin n

w o d k a e r

B et h problem…

) a

( Axial Bending Stresses: Each lfange/s it ffener sh a some area d

e t a i c o s s

a hw ti dti a ti n car ires axial s rtess o nly (assume σxx si t

n a t s n o

c w tihin each lfange/s it ffener area)

a

P lu A. Lagac © e 2001 U 5n ti 1 - 7

e r u g i

F 1 5.6

(8)

T I

M - 1 26 0 .

e h

T axial s rtess si ed u o only t bending (and axial force fi that exists --

e v a e

l ta zero rf wo no ) da sn i therefore independent fo et h twis itng since et h g

n i

w si erf e ot warp (except near root -- tS . Venant assump itons)

* F , i n d M , S T m rf o s t a it c s t a y a n c r o s s - s e c it o n x f o e t h b e a m

r e d i s n o

C et h cross-sec iton:

e r u g i

F 15.7 Representa iton fo cross-sec iton fo xb o beam a e r

A associated hw ti r

e n e ff it s / e g n a

lf i = Ai

d n i

F et h modulus-weighted cen rtoid ( tN e: o lfange/s it ffeners m eay b e

d a

m mrfo di fferent mate irals)

a

P lu A. Lagac © e 2001

a F ll, 20 20

ti n

U 51 - 8

(9)

e s o o h

C some sa xi system ,y z (convenience says eo n might e

s

u a “corne ”r fo et h beam) d

n i

F et h modulus-weighted nce rt oid loca iton: y * =

i

z * =

= msu over number fo lfanges/s it ffeners) r

e b m u

n = n

( tN e: fI o lfanges/s it ffeners ea r made fo et h e

m a

s mate ira ,l remove et h aste irsks) d

n i

F et h moments fo iner ita hw ti reference ot et h coordinate m

e t s y

s hw ti o irgin ta et h modulus-weighted cen rtoid

A zi

A yi

A yi* iz

ti n

U 51 - 9

i *

A

A y i

*

A iz

A i

(

i *

*

n i =1

* *2 i

* *2 i

* *

i

Iy = Iz = Iyz =

a

P lu A. Lagac © e 2001

*

*

*

(10)

ll a F , 02 2 0

• F eind t h s rtesses ni each lfange yb using et h equa iton previously e

p o l e v e

d d:

- E1 f2y - E1 f3z - E1 α ∆T

� 0 rf oo n axial force

lli W

( od na example fo st nhi i rectia iton)

r a e h

S stresses: assume et h skins da n webs ea nr t hi such that et h r

a e h

s s rtess si constant through the ri thickness . e

s

U et h concept fo “shear olf w” previously developed: ]

h t g n e l/

e c r o F

[

s s e n k c i h t r a e h

s s rtess (ca lled st ehi t h shear n

a tl u s e

r t ni et h case fo torsion) k

o o

L ta et h example cross-sec iton da n label et h j“oints” da n “skins”

a

P lu A. Lagac © e 2001 T

I

M - 1 26 0 .

) b (

FT OT

� �

σ x x = E � �

E1 A *

s

q = σ t x

r a e h slf ow

ti n

U 51 - 01

(11)

n o it a t n e s e r p e

R fo joints, skins, da n shear lfows ni s

s o r

c -sec iton fo xb o beam

k o o

L ta et h equ ilib irum fo nj t : oi n

o it a t n e s e r p e

R fo skins da n st irnger da n associated loads d

n

a shear lfows ta joint 1

n i k s r

e g n ir t s

n i k s

ti n

U 51 - 11

1

e r u g i

F 1 5.9

a

P lu A. Lagac © e 2001

e r u g i

F 1 5.8

(12)

ll a F , 02 2 0

e t o

N s:

• T he st irnger o nly car ires axial load

• T nhe s ki car ires o nly shear wlf o

•� T he shear wlf to a et nh “ d” fe o et nh s ki (where ti si )”

t u c

“ m eust b et h same sa ta et h edge et( h s

s o r

c -sec iton c . u )t T shis i ed ou t equ ilib irum (σx y = σyx)

y l p p

A equ ilib irum:

- P +

q1 - q6 = -

e r o

M genera lly note tha :t

a

P lu A. Lagac © e 2001 T

I

M - 1 26 0 .

= 0

q1 d x - q6 d x = 0

ti n

U 51 - 21

F x

x d + dP

P + dx

P d

x

d

(13)

A en gl that ns ki comes oint joint doesn t ’ ma tter since q along e

g d

e si always ni x-d riec iton n

o it a t n e s e r p e

R fo skins ta joint coming ni ta ya n angle

2. St irnger alone gives a ss ti cont irbu iton

e r u g i

F 15.11 Representa iton fo st irnger isolated ta oj int

a

P lu A. Lagac © e 2001

. 1

e r u g i

F 15.10

P d dx

ti n

U 51 - 31

(14)

ll a F , 02 2 0

fI shear lfows “i ont join ,t sti cont irbu itons si ni ht e nega itve x-

; n o it c e ri

d fi shear lfows “o ofut join ,t sti cont irbu iton si ni et h v

it i s o

p e x-d riec iton

e r u g i

F 15.12 Representa iton fo shear lfowing (lef )t oint da n ( irgh )t o fut o t

n i o

j

g n i d d

A lla st :hi u p - qin

qo tu -

e s

U st nhi i general

a

P lu A. Lagac © e 2001

P d

x d

+ qo tu = 0 P d

x d

ti n

U 51 - 41

qin = -

T I

M - 1 26 0 .

. 3

(15)

ll a F , 02 2 0

r o

F a more comp ilcated join ,t eu s superposi iton

e r u g i

F 15.13 Representa iton fo joint w tih mul itple skins

--> Need na expression rf P -- o sta tr w tih:

=

: g n it a it n e r e ff i d

xx

dx

e c n i

s ea r conside irng st irngers h

ti

w a un fiorm cross-sec iton

t n i o

J Equi ilb irum

ti n

U 51 - 51

I

M T - 16. 02

x

P x

= A dA

+ σ dx

x x

P d

dx

= 0 t

s o

M general sc e: a

q

out

- q

in

=

a

P lu A. Lagac © e 2001

- A dσ dx

x x
(16)

T I

M - 1 26 0 .

r e d i s n o

C a simpler case:

• Iyz = 0

• Mz = 0 w

o n

k tha :t

x x

My z x

d Iy

z A

Iy

r a e h s

( resu tlan )t t

n e m o m

( fo area about )y o

S rf so t hi case, et h joint equ ilib irum equa iton becomes:

a

P lu A. Lagac © e 2001

ll a F , 02 2 0

ti n

U 51 - 61

c ir t e m m y s

( sec iton)

My z - Iy

σ =

� - �

dMy

dx

� �

= A

= -

Sz

dP d

dx dP dx ll

a c e

R tha :t dMy

dx =

z

A = Qy

(17)

• Symmet irc sec iton

• Mz = 0

w o

N have na equa iton rf eo t h equ ilib irum fo shear s rtesses ta et h joints. r

a e h

S s rtesses a irse ed ou t ot w reasons:

• Shear resu tlant

• Twis itng

n

I general have ta ya n cross-sec iton:

tI si convenient ot break pu et h problem oint ot w separate problems:

a

P lu A. Lagac © e 2001

Q

y

S

z

q

out

- q

in

=

I

y

ti n

U 51 - 71

(18)

ll a F , 02 2 0

) 1

( “Pure Shear” ( “2) Pure Twist”

r a e h

s resu tlant acts t

a shear center os e

r e h

t si on twis itng

--> Solve each problem separately, then da ed t h resu tls (use )

n o it i s o p r e p u

s

o it i d n o

C n: T ohe t w force systems S( z, T a Snd z

, T

) m eust b

t n e ll o p i u q

e

n o it a r t s n o m e

D fo equipo llence of force systems

ti n

U 51 - 81

T I

M - 1 26 0 .

e r u g i

F 15.14

a

P lu A. Lagac © e 2001

(19)

ll a F , 02 2 0

d = distance mrfo where shear resu tlant a octs t shear center S = Sz

T ′ - Sz d = T u

f e r a

c l: s ign could eb + ro - depending upon n

o it c e ri

d Sz si moved! n

o it a t n e s e r p e

R of posi itve da n nega itve cont irbu iton fo Sz

o

t torque

n i

H t: A pdd u torques about eil fn o Sz ac iton ni each case. y

e h

T m eust b et h same!

( d sh a magn tiude da n sign)

ti n

U 51 - 91

= same

= as m e

z z

e r u g i

F 15.15

a

P lu A. Lagac © e 2001 T

I

M - 1 26 0 .

n if e

D e:

F

T
(20)

T I

M - 1 26 0 .

n o it u l o

S procedure :

n e v i

G • sec iton proper ites

• loading [T(x ,) Sz( x ]) d

n i

F : • shear s rtesses ( lfows) ( n joints)

• shear center

n( + )1 va irables r

e d i s n o

C “Pure Shear” case )

a Apply joint equ ilib irum equa iton ta each joint t

o

N e: n joints lliw yield n-1 independent n

o it a u q

e s. (one si dependent since t eh n

o it c e

s si closed) )

b U se Torque Boundary Condi iton

= T

ap lpeid

s i h

T si torque equivalence, n ot equ ilib irum o

D st hi about et eh il fn o ac iton fo Sz

ti n

U 51 - 02

a F ll, 20 20

. 1

a

P lu A. aL gace © 2001

l a n r e t n

∑ T

i
(21)

ll a F , 02 2 0

: n e h T

Tap lpeid = Sz d

qi (moment mar )i (s kinlength)i

d e if i c e p

S on stwi t (Pure Shear Case ,) os apply et h No t

s i w

T Condi iton ll

a c e

R mrfo Torsion Theory:

τ ds

: e r e H

: d n a

a

P lu A. Lagac © e 2001 T

I

M - 1 26 0 .

c)

l a n r e t n

T i =

dx

dx

τ

= 2 A G

= 0 q

= t

ds = 0

ti n

U 51 - 12

∫ q t

(22)

ll a F , 02 2 0

n - 1 equa itons 1 equa iton 1 equa iton

n + 1 equa itons f n + 1 or va irables g

n i v l o

S these gives:

• q’s ed ou t “Pure Shear” case

• d

--> when complete, check :v ia

∑ Internal Shear loads = App iled Shear l

a t n o z ir o H

( & ver itca )l r

e d i s n o

C “Pure Torsion” case )

a Apply joint equ ilib irum equa iton ta each joint t

o

N e: again, n joints eg n-1 iv equa itons e

c n i

S on shea :r qo tu - qi n = 0

ti n

U 51 - 22

T I

M - 1 26 0 .

s i h

T gives: ) a ) b c)

. 2

a

P lu A. aL gace © 2001

(23)

ll a F , 02 2 0

e s

U Torque Boundary Cond tii on

= Tap lpeid

Tap lpeid = T + o r - Sz d

d n u o

f ni p 1 a tr

n - 1 equa itons 1 equa iton

• Need: n q s’ e

v l o

S these rf q so ’ ed ou t “Pure Torsion” case

m u

S resu tls rf “o Pure Shear” da n “Pure Torsion” cases d

l u o c

( eu qs is, qiT: qi ed ou t pure shear = qis

qi ed ou t pure torsion = qiT)

ti n

U 51 - 32

l a n r e t n

T i

. 3

a

P lu A. aL gace © 2001 T

I

M - 1 26 0 .

) b

s i h

T gives: ) a ) b

(24)

ll a F , 02 2 0

q t lli

w

( eb impo trant ot determine de lfec iton)

lli w

( og over sample problem fo handout 6# ni rectia iton)

:r o

f Unsymmet irc She ll Beams

• Cannot make simpl fiying assump itons (use equa itons o

c up ilng bending ni y da )n z

• S ee handout B# 4

o t e u d ( s e s s e rt s e h t t a h t w o

N b e n d i n g , s h e a r a n d t o r s i o n ) e

r

a d e t e r m i n e d , p r o c e e d o t d if n t h e …

a

P lu A. Lagac © e 2001 T

I

M - 1 26 0 .

w o

N have: shear lfows t

e g

( shear s rtesses :v ia ) o

l ca iton fo shear center

τxs =

ti n

U 51 - 72

(25)

N O I T C E

S PROPERTIES g

n i d n e

B S it ffness, IE

A y2

A z2

A y z

)

b Shear S it ffness, AG (have tn o done st hi before)

r e d i s n o

C et h de lfec itons ∆v da ∆w rn f a o segment ∆x hw lti o y n shear s

e c r o

f Sy da Sn z ac itng ta et h shear center

e r u g i

F 15.18 Representat ni fo o she ll beam segment w tih only shear s

e c r o

f ac itng ta et h shear center

a

P lu A. Lagac © e 2001

)

a (as before)

Iz = Iy = Iyz =

*

*

*

ti n

U 51 - 82

(26)

ll a F , 02 2 0

n a

C express et h shear lfows ni each member sa cont irbu itons ed ou t Sy da Sn z :

q )( = qs y ( Ss) y + qz )( Ss z

: e r e h

w

= shear wlf eo d ou t Sy fo u n ti magn tiude

= shear wlf eo d ou t Sz fo u n ti magn tiude --> oT determine ∆v da ∆n w ti s, i b oest t eu ns a Energy Method tI nc ea b shown tha :t

A =

A =

A =

P la A. u Lagace© 2 100

qy (s ) qz (s )

qy

s t d

yy 1 2

( )

qz 2

( )

1 d s

s d

ti n

U 51 - 92

z z

t qy q1 z

t

z y

MIT - 16. 02

(27)

ll a F , 02 2 0

l a n o i s r o

T S it ffness, JG y

l s u o i v e r

P ws a tha :t

r o

f( closed sec iton)

s a

( tj )us d id

= shear wlf eo d ou t T fo u n ti magn tiude ,

n e h

T using st nhi i et h above:

T q

G2 A t :

g n ill a c e

R

T

d x G J

a

P lu A. Lagac © e 2001 T

I

M - 61 . 02

) c

dx

:t e L

q t d s

= 1 2 AG

q = q (s ) T : e r e h

w q (s)

=

d s

dx

=

r o

f( closed sec iton)

ti n

U 51 - 03

2 A q

t d s

J =

(28)

ll a F , 02 2 0

, g n i z ir a m m u

S ot dif en t h de lfec itons: n

i a t b

O et h sec iton proper ites ,I( E G )A, G dJ a en t ah loc it fon o e

h

t shear center e

s o p m o c e

D load oint moments, shears ta shear cente ,r da n e

u q r o

t about shear center d

n i

F i(ndependen lty) bending, shea irng, da n twis itng de lfec itons t

u o b

a eil fn o shear centers (elas itc axis) m

u

S de lfec itons ot obtain total ed lfec iton .

1 . 2

. 3

. 4

e r u g i

F 15.19

a

P lu A. Lagac © e 2001

Referensi

Dokumen terkait

Beritahukanlah kepada murid-murid Anda bahwa ketika mereka merasa diri mereka diminta untuk melakukan sesuatu yang menurut mereka mungkin sesuatu yang melawan Allah, mereka

Petrus menyadari bahwa tidaklah pantas bagi Yesus untuk melakukan pekerjaan itu. Namun ketika ia menyatakan keberatannya, maka Yesus tetap mendesak Petrus.

Gambaran Produk Domestik Regional Bruto Kabupaten Temanggung Tahun 2015 18 Jasa keuangan lainnya meliputi mencakup kegiatan leasing, kegiatan pemberian pinjaman oleh

Nilai tambah atas dasar harga berlaku dan atas dasar harga konstan 2000 dihitung dengan cara mengalikan nilai produksi dengan rasio nilai tambah berdasarkan Tabel I-O

Kios Sederhana adalah jenis bangunan dengan konstruksi sederhana tidak coor beton baik satu tingkat maupun bertingkat lebih dari satu atau bangunan induknya

[r]

Apakah Dia memasak spaghetti?” Anda dapat membantu mereka mengerti bahwa Allah tidak secara langsung menciptakan segala sesuatu, tetapi Dia menyediakan sumber-

Di dalam nama Tuhan Yesus Kristus kami berdoa. Bapa kami yang di surga, kami bersyukur kepada-Mu, karena telah membawa kami ke mari untuk menyembah-Mu. Sekalipun kita tidak