U ti n 5 1 g
n ir a e h
S a n d T o r s i o n ( a n d B e n d i n g )
a
P lu A. Lagac © e 2001
T I
M - 1 26 0 .
s u h
T ,r f e a w h a v e c o n c e n rt a t e d n o e t h b e n d i n g f o s h e ll m
a e
b s. H o w e v e ,r i n t h e g e n e r a l c a s e a b e a m s i s u b j e c t e d : t o
• axial load, F
• bending moments, M
• shear forces, S
• torque t(orsional moments ,) T s
e l p m a x
E fo general aerospace she ll beam structures ll e
g n it c e n n o
c nodes
ti n
U 51 - 2
a F ll, 20 20
e r u g i
F 1 5.1
c ri A
a
P lu A. Lagac © e 2001
e z il a e d
I et h cross-sec iton fo et h she ll beam oint ot w pa trs:
• P sa tr that ca rry extensional s rtess, σx x (and thus et h bending da n l
a i x
a loads)
• Pa trs that ca rry shear s rtess σx s (and thus et h shear loads and )
s e u q r o
t
o w
T examples a n… gai
• h igh aspect r oa it w hing w ti semi-monocoque cons rtuc iton e
t o
N s:
u q o c o n o
m e nco s rtuc iton
• – lla ni eo n piece w tihout internal rfaming
• – rfom French “coque” meaning “eggshell”
• – “mono” = eo n piece i
m e
s -monocoque
– s rtessed ns ki cons rtuc iton tiw h internal rfamework – s t lli have “eggshell” ot ca rry shear s rtesses, σx s
– internal rfamework ot ca rry axial s rtess, σx x
ti n
U 51 - 3
•
•
a
P lu A. Lagac © e 2001
ll a F , 02 2 0
n o it a t n e s e r p e
R fo wing semi-monocoque construc iton b
ir b
e
w + s e g n a
lf = spar
b e w e
z il a e d
I st hi sec iton :a s n
o it a z il a e d
I fo wing semi-monocoque construc iton
ti n
U 51 - 4
T I
M - 1 26 0 .
e r u g i
F 1 5.2
s e g n a lf
skin
s r e n e ff it s
e r u g i
F 1 5.3
a
P lu A. Lagac © e 2001
l a F l, 02 2 0
→ Skins da n webs ea r assumed ot ca rry lo y n shear s rtess σx s
→ Flanges da n st irngers ea r assumed ot ca rry lo y n axial s
s e rt
s σx x
e c a p
S hab tiat
e r u g i
F 15.4 Representa iton fo space hab tiat semi-monocoque n
o it c u r t s n o
c
s e g n a lf spar
ll a
w st fifeners e
z il a e d
I sa rf o wing:
a
P lu A. Lagac © e 2001 T
I
M - 1 26 0 .
•
ll a w
ti n
U 51 - 5
ll a F , 02 2 0
n o it a z il a e d
I fo space hab tiat semi-monocoque construc iton
r e t u
O ns dki a n wa lls ea r assumed ot ca rry o nly shear s rtess σx s
s e g n a l
F da n s it ffeners ea r assumed ot ca rry lo y an a l xi s rtess σx x
e z y l a n
A these cross-sec itons sa a beam under combined bending, shea ,r d
n
a torsion. Ut ilize tS . Venant assump itons:
1. There ea r enough closely spaced ir sgid ir ob t preserve et h shape f
o et h cross-sec iton r( o enough s it ffness ni et h internal bracing ot o
d such)
2. T he cross-sec itons ea er rf oe t warp to - fu o -plane tr
a t
S ot develop et h basic equa itons yb looking ta et h m ost basic case:
a
P lu A. Lagac © e 2001 T
I
M - 1 26 0 .
e r u g i
F 1 5.5
→
→
ti n
U 51 - 6
e l g n i
S C e ll “ B o x B e a m ”
n o it a t n e s e r p e
R fo geometry fo single c xe ll b eo b ma
s u l u d o
m -weighted centroid of e
g n a
lf da n s it ffener area used s
a o irgin n
w o d k a e r
B et h problem…
) a
( Axial Bending Stresses: Each lfange/s it ffener sh a some area d
e t a i c o s s
a hw ti dti a ti n car ires axial s rtess o nly (assume σxx si t
n a t s n o
c w tihin each lfange/s it ffener area)
a
P lu A. Lagac © e 2001 U 5n ti 1 - 7
e r u g i
F 1 5.6
T I
M - 1 26 0 .
e h
T axial s rtess si ed u o only t bending (and axial force fi that exists --
e v a e
l ta zero rf wo no ) da sn i therefore independent fo et h twis itng since et h g
n i
w si erf e ot warp (except near root -- tS . Venant assump itons)
* F , i n d M , S T m rf o s t a it c s t a y a n c r o s s - s e c it o n x f o e t h b e a m
r e d i s n o
C et h cross-sec iton:
e r u g i
F 15.7 Representa iton fo cross-sec iton fo xb o beam a e r
A associated hw ti r
e n e ff it s / e g n a
lf i = Ai
d n i
F et h modulus-weighted cen rtoid ( tN e: o lfange/s it ffeners m eay b e
d a
m mrfo di fferent mate irals)
a
P lu A. Lagac © e 2001
a F ll, 20 20
ti n
U 51 - 8
e s o o h
C some sa xi system ,y z (convenience says eo n might e
s
u a “corne ”r fo et h beam) d
n i
F et h modulus-weighted nce rt oid loca iton: y * =
i
z * =
= msu over number fo lfanges/s it ffeners) r
e b m u
n = n
( tN e: fI o lfanges/s it ffeners ea r made fo et h e
m a
s mate ira ,l remove et h aste irsks) d
n i
F et h moments fo iner ita hw ti reference ot et h coordinate m
e t s y
s hw ti o irgin ta et h modulus-weighted cen rtoid
∑
A zi∑
A yi∑
A yi* izti n
U 51 - 9
•
•
•
i *
∑
A∑
A y i*
∑
A iz∑
A i(
i *
*
∑
n i =1* *2 i
* *2 i
* *
i
Iy = Iz = Iyz =
a
P lu A. Lagac © e 2001
*
*
*
ll a F , 02 2 0
• F eind t h s rtesses ni each lfange yb using et h equa iton previously e
p o l e v e
d d:
- E1 f2y - E1 f3z - E1 α ∆T �
� 0 rf oo n axial force
lli W
( od na example fo st nhi i rectia iton)
r a e h
S stresses: assume et h skins da n webs ea nr t hi such that et h r
a e h
s s rtess si constant through the ri thickness . e
s
U et h concept fo “shear olf w” previously developed: ]
h t g n e l/
e c r o F
[
s s e n k c i h t r a e h
s s rtess (ca lled st ehi t h shear n
a tl u s e
r t ni et h case fo torsion) k
o o
L ta et h example cross-sec iton da n label et h j“oints” da n “skins”
a
P lu A. Lagac © e 2001 T
I
M - 1 26 0 .
) b (
FT OT
� �
σ x x = E � �
E1 A *
s
q = σ t x
r a e h slf ow
ti n
U 51 - 01
n o it a t n e s e r p e
R fo joints, skins, da n shear lfows ni s
s o r
c -sec iton fo xb o beam
k o o
L ta et h equ ilib irum fo nj t : oi n
o it a t n e s e r p e
R fo skins da n st irnger da n associated loads d
n
a shear lfows ta joint 1
n i k s r
e g n ir t s
n i k s
ti n
U 51 - 11
1
e r u g i
F 1 5.9
a
P lu A. Lagac © e 2001
e r u g i
F 1 5.8
ll a F , 02 2 0
e t o
N s:
• T he st irnger o nly car ires axial load
• T nhe s ki car ires o nly shear wlf o
•� T he shear wlf to a et nh “ d” fe o et nh s ki (where ti si )”
t u c
“ m eust b et h same sa ta et h edge et( h s
s o r
c -sec iton c . u )t T shis i ed ou t equ ilib irum (σx y = σyx)
y l p p
A equ ilib irum:
⇒ - P +
q1 - q6 = -
e r o
M genera lly note tha :t
a
P lu A. Lagac © e 2001 T
I
M - 1 26 0 .
• = 0
q1 d x - q6 d x = 0
ti n
U 51 - 21
∑
F xx d + dP
P + dx
P d
x
⇒ d
A en gl that ns ki comes oint joint doesn t ’ ma tter since q along e
g d
e si always ni x-d riec iton n
o it a t n e s e r p e
R fo skins ta joint coming ni ta ya n angle
2. St irnger alone gives a ss ti cont irbu iton
e r u g i
F 15.11 Representa iton fo st irnger isolated ta oj int
a
P lu A. Lagac © e 2001
. 1
e r u g i
F 15.10
P d dx
ti n
U 51 - 31
ll a F , 02 2 0
fI shear lfows “i o” nt join ,t sti cont irbu itons si ni ht e nega itve x-
; n o it c e ri
d fi shear lfows “o of” ut join ,t sti cont irbu iton si ni et h v
it i s o
p e x-d riec iton
e r u g i
F 15.12 Representa iton fo shear lfowing (lef )t oint da n ( irgh )t o fut o t
n i o
j
g n i d d
A lla st :hi u p - qin
qo tu -
e s
U st nhi i general
a
P lu A. Lagac © e 2001
P d
x d
⇒
+ qo tu = 0 P d
x d
ti n
U 51 - 41
qin = -
T I
M - 1 26 0 .
. 3
ll a F , 02 2 0
r o
F a more comp ilcated join ,t eu s superposi iton
e r u g i
F 15.13 Representa iton fo joint w tih mul itple skins
--> Need na expression rf P -- o sta tr w tih:
= Aσ
: g n it a it n e r e ff i d
dσ xx
dx
e c n i
s ea r conside irng st irngers h
ti
w a un fiorm cross-sec iton
t n i o
J Equi ilb irum
ti n
U 51 - 51
I
M T - 16. 02
x
P x
⇒ = A dA
+ σ dx
x x
P d
dx
= 0 t
s o
M general sc e: a
q
out- q
in=
a
P lu A. Lagac © e 2001
- A dσ dx
x xT I
M - 1 26 0 .
r e d i s n o
C a simpler case:
• Iyz = 0
• Mz = 0 w
o n
k tha :t
x x
My z x
d � Iy �
z A
Iy
r a e h s
( resu tlan )t t
n e m o m
( fo area about )y o
S rf so t hi case, et h joint equ ilib irum equa iton becomes:
a
P lu A. Lagac © e 2001
ll a F , 02 2 0
ti n
U 51 - 61
c ir t e m m y s
( sec iton)
My z - Iy
σ =
� - �
dMy
dx
� �
= A
= -
Sz
⇒ dP d
dx dP dx ll
a c e
R tha :t dMy
dx =
z
A = Qy
• Symmet irc sec iton
• Mz = 0
w o
N have na equa iton rf eo t h equ ilib irum fo shear s rtesses ta et h joints. r
a e h
S s rtesses a irse ed ou t ot w reasons:
• Shear resu tlant
• Twis itng
n
I general have ta ya n cross-sec iton:
tI si convenient ot break pu et h problem oint ot w separate problems:
a
P lu A. Lagac © e 2001
Q
yS
zq
out- q
in=
I
yti n
U 51 - 71
ll a F , 02 2 0
) 1
( “Pure Shear” ( “2) Pure Twist”
r a e h
s resu tlant acts t
a shear center os e
r e h
t si on twis itng
--> Solve each problem separately, then da ed t h resu tls (use )
n o it i s o p r e p u
s
o it i d n o
C n: T ohe t w force systems S( z, T a Snd z
’
, T’
) m eust bt n e ll o p i u q
e
n o it a r t s n o m e
D fo equipo llence of force systems
ti n
U 51 - 81
T I
M - 1 26 0 .
◊
e r u g i
F 15.14
a
P lu A. Lagac © e 2001
ll a F , 02 2 0
d = distance mrfo where shear resu tlant a octs t shear center S = Sz ′
T ′ - Sz d = T u
f e r a
c l: s ign could eb + ro - depending upon n
o it c e ri
d Sz si moved! n
o it a t n e s e r p e
R of posi itve da n nega itve cont irbu iton fo Sz
o
t torque
n i
H t: A pdd u torques about eil fn o Sz ac iton ni each case. y
e h
T m eust b et h same!
(⇒ d sh a magn tiude da n sign)
ti n
U 51 - 91
= same ⇒
= as m e ⇒
z z
e r u g i
F 15.15
a
P lu A. Lagac © e 2001 T
I
M - 1 26 0 .
n if e
D e:
∑
F∑
TT I
M - 1 26 0 .
n o it u l o
S procedure :
n e v i
G • sec iton proper ites
• loading [T(x ,) Sz( x ]) d
n i
F : • shear s rtesses ( lfows) ( n joints)
• shear center
⇒ n( + )1 va irables r
e d i s n o
C “Pure Shear” case )
a Apply joint equ ilib irum equa iton ta each joint t
o
N e: n joints lliw yield n-1 independent n
o it a u q
e s. (one si dependent since t eh n
o it c e
s si closed) )
b U se Torque Boundary Condi iton
= T
ap lpeids i h
T si torque equivalence, n ot equ ilib irum o
D st hi about et eh il fn o ac iton fo Sz
ti n
U 51 - 02
a F ll, 20 20
. 1
a
P lu A. aL gace © 2001
l a n r e t n
∑ T
ill a F , 02 2 0
: n e h T
Tap lpeid = Sz d
qi (moment mar )i (s kinlength)i
d e if i c e p
S on stwi t (Pure Shear Case ,) os apply et h No t
s i w
T Condi iton ll
a c e
R mrfo Torsion Theory:
∫
τ ds: e r e H
: d n a
⇒
a
P lu A. Lagac © e 2001 T
I
M - 1 26 0 .
c)
∑
l a n r e t n
∑
T i =dα dx
dα dx
τ
= 2 A G
= 0 q
= t
ds = 0
ti n
U 51 - 12
∫ q t
ll a F , 02 2 0
n - 1 equa itons 1 equa iton 1 equa iton
n + 1 equa itons f n + 1 or va irables g
n i v l o
S these gives:
• q’s ed ou t “Pure Shear” case
• d
--> when complete, check :v ia
∑ Internal Shear loads = App iled Shear l
a t n o z ir o H
( & ver itca )l r
e d i s n o
C “Pure Torsion” case )
a Apply joint equ ilib irum equa iton ta each joint t
o
N e: again, n joints eg n-1 iv equa itons e
c n i
S on shea :r qo tu - qi n = 0
ti n
U 51 - 22
T I
M - 1 26 0 .
s i h
T gives: ) a ) b c)
. 2
a
P lu A. aL gace © 2001
ll a F , 02 2 0
e s
U Torque Boundary Cond tii on
= Tap lpeid
Tap lpeid = T + o r - Sz d
d n u o
f ni p 1 a tr
n - 1 equa itons 1 equa iton
• Need: n q s’ e
v l o
S these rf q so ’ ed ou t “Pure Torsion” case
m u
S resu tls rf “o Pure Shear” da n “Pure Torsion” cases d
l u o c
( eu qs is, qiT: qi ed ou t pure shear = qis
qi ed ou t pure torsion = qiT)
ti n
U 51 - 32
l a n r e t n
∑
T i⇒
. 3
a
P lu A. aL gace © 2001 T
I
M - 1 26 0 .
) b
s i h
T gives: ) a ) b
ll a F , 02 2 0
q t lli
w
( eb impo trant ot determine de lfec iton)
lli w
( og over sample problem fo handout 6# ni rectia iton)
:r o
f Unsymmet irc She ll Beams
• Cannot make simpl fiying assump itons (use equa itons o
c up ilng bending ni y da )n z
• S ee handout B# 4
o t e u d ( s e s s e rt s e h t t a h t w o
N b e n d i n g , s h e a r a n d t o r s i o n ) e
r
a d e t e r m i n e d , p r o c e e d o t d if n t h e …
a
P lu A. Lagac © e 2001 T
I
M - 1 26 0 .
w o
N have: shear lfows t
e g
( shear s rtesses :v ia ) o
l ca iton fo shear center
τxs =
ti n
U 51 - 72
N O I T C E
S PROPERTIES g
n i d n e
B S it ffness, IE
∑
A y2∑
A z2∑
A y z)
b Shear S it ffness, AG (have tn o done st hi before)
r e d i s n o
C et h de lfec itons ∆v da ∆w rn f a o segment ∆x hw lti o y n shear s
e c r o
f Sy da Sn z ac itng ta et h shear center
e r u g i
F 15.18 Representat ni fo o she ll beam segment w tih only shear s
e c r o
f ac itng ta et h shear center
a
P lu A. Lagac © e 2001
)
a (as before)
Iz = Iy = Iyz =
*
*
*
ti n
U 51 - 82
ll a F , 02 2 0
n a
C express et h shear lfows ni each member sa cont irbu itons ed ou t Sy da Sn z :
q )( = qs y ( Ss) y + qz )( Ss z
: e r e h
w
= shear wlf eo d ou t Sy fo u n ti magn tiude
= shear wlf eo d ou t Sz fo u n ti magn tiude --> oT determine ∆v da ∆n w ti s, i b oest t eu ns a Energy Method tI nc ea b shown tha :t
A =
∫
A =
A =
P la A. u Lagace© 2 100
qy (s ) qz (s )
qy
s t d
yy 1 2
( )
∫
∫
qz 2
( )
1 d ss d
ti n
U 51 - 92
z z
t qy q1 z
t
z y
MIT - 16. 02
ll a F , 02 2 0
l a n o i s r o
T S it ffness, JG y
l s u o i v e r
P ws a tha :t
r o
f( closed sec iton)
s a
( tj )us d id
= shear wlf eo d ou t T fo u n ti magn tiude ,
n e h
T using st nhi i et h above:
T q
G2 A t :
g n ill a c e
R
dα T
d x G J
⇒
∫
a
P lu A. Lagac © e 2001 T
I
M - 61 . 02
) c
dα dx
:t e L
q t d s
∫
= 1 2 AG
q = q (s ) T : e r e h
w q (s)
=
∫
d sdα dx
=
r o
f( closed sec iton)
ti n
U 51 - 03
2 A q
t d s
J =
ll a F , 02 2 0
, g n i z ir a m m u
S ot dif en t h de lfec itons: n
i a t b
O et h sec iton proper ites ,I( E G )A, G dJ a en t ah loc it fon o e
h
t shear center e
s o p m o c e
D load oint moments, shears ta shear cente ,r da n e
u q r o
t about shear center d
n i
F i(ndependen lty) bending, shea irng, da n twis itng de lfec itons t
u o b
a eil fn o shear centers (elas itc axis) m
u
S de lfec itons ot obtain total ed lfec iton .
1 . 2
. 3
. 4
e r u g i
F 15.19
a
P lu A. Lagac © e 2001