Advanced Numerical Methods 1
ﯽﻤﯿﺷﻮﻣﺮﺗ و قاﺮﺘﺣا
Advanced Combustion
Advanced Numerical Methods 2
ﯽﯾﺎﯿﻤﯿﺷ لدﺎﻌﺗ )
Chemical Equilibrium (
رد
يﺎﻫﺪﻨﯾآﺮﻓ ﯽﻗاﺮﺘﺣا
ﺎﻣد ﻻﺎﺑ ) T>1250 K (،
تﻻﻮﺼﺤﻣ قاﺮﺘﺣا
ﺮﮕﯾد طﻮﻠﺨﻣ
يا هدﺎﺳ
زا .ﺪﻨﺘﺴﯿﻧ .(ﺪﻨﮐ ﯽﻣ ﻦﯿﯿﻌﺗ يﺮﺘﻣﻮﯿﮐﻮﺘﺳا ﺶﻨﮐاو ﻪﮐ ﯽﺗﻻﻮﺼﺤﻣ) لآ هﺪﯾا تﻻﻮﺼﺤﻣ رد
ﻦﯾا ﺖﻟﺎﺣ يﺎﻫ ﻪﻧﻮﮔ
ﯽﻠﺻا ﻪﯾﺰﺠﺗ
هﺪﺷ )
dissociate (
و ﯽﻫوﺮﮔ زا
يﺎﻫ ﻪﻧﻮﮔ
ﯽﻋﺮﻓ .ﺪﻧﺮﯿﮔ ﯽﻣ ﻞﮑﺷ
تﻻﻮﺼﺤﻣ
قاﺮﺘﺣا ﻞﻣﺎﮐ
) نوﺪﺑ ﻪﯾﺰﺠﺗ
ﯽﯾﺎﯿﻤﯿﺷ (:
<1
ϕ
=1
ϕ
<1
ϕ
تﻻﻮﺼﺤﻣ
قاﺮﺘﺣا ﺎﺑ
ﻪﯾﺰﺠﺗ ﯽﯾﺎﯿﻤﯿﺷ
:
Hydrocarbon+AirCO
2+H
2O+O
2+N
2Hydrocarbon+AirCO
2+CO+H
2O+N
2Hydrocarbon+AirCO
2+H
2O+N
2Advanced Combustion
Hydrocarbon+AirCO
2+CO+H
2O+O
2+O+OH+H+N
2+NO+N…
Advanced Numerical Methods 3
ﯽﯾﺎﯿﻤﯿﺷ لدﺎﻌﺗ )
Chemical Equilibrium (
ﺮﮔا
ﭻﯿﻫ يﺮﯿﯿﻐﺗ
رد ﺐﯿﮐﺮﺗ ﯽﯾﺎﯿﻤﯿﺷ
ﮏﯾ ﻢﺘﺴﯿﺳ
ﻪﺑ دﻮﺟو
،ﺪﯾﺎﯿﻧ نآ
ﯿﺳ ﻢﺘﺴ
رد . دﺮﺑ ﯽﻣ ﺮﺳ ﻪﺑ ﯽﯾﺎﯿﻤﯿﺷ لدﺎﻌﺗ
مﻮﻬﻔﻣ
لدﺎﻌﺗ ﯽﺋﺎﯿﻤﯿﺷ
ﻪﺸﯾر رد
نﻮﻧﺎﻗ مود
ﮏﯿﻣﺎﻨﯾدﻮﻣﺮﺗ دراد
.
لدﺎﻌﺗ
ﯽﯾﺎﯿﻤﯿﺷ ياﺮﺑ
ﮏﯾ ﻢﺘﺴﯿﺳ
ﻪﺘﺴﺑ
ﺶﻨﮐاو ﺮﯾز
ار رد ﺮﻈﻧ ﺪﯾﺮﯿﮕﺑ :
ﺮﮔا يﺎﻣد ﯽﯾﺎﻬﻧ
ﻪﺑ هزاﺪﻧا ﯽﻓﺎﮐ
دﺎﯾز ﺪﺷﺎﺑ
يد ﺪﯿﺴﮐا ﻦﺑﺮﮐ
ﻪﯾﺰﺠﺗ ﺪﻫاﻮﺧ
ﺪﺷ .
يﺮﺴﮐ α زا
يد ﺪﯿﺴﮐا ﻦﺑﺮﮐ
ﺖﺳا ﻪﮐ
ﻪﯾﺰﺠﺗ هﺪﺷ
ﺖﺳا .
ناﻮﺗ ﯽﻣ يﺎﻣد
ﻪﻠﻌﺷ ﮏﯿﺗﺎﺑﺎﯾدآ
ار ياﺮﺑ ﺶﻨﮐاو
ﻪﯾﺰﺠﺗ قﻮﻓ
بﺎﺴﺣ دﺮﮐ
. ﻦﯾا ﺎﻣد ﯽﻌﺑﺎﺗ زا
α .ﺖﺳا
Advanced Combustion
CO+0.5O2CO2
CO+0.5O2 (1-α)CO2+ αCO+0.5αO2
Advanced Numerical Methods 4
لدﺎﻌﺗ ﻪﻟوﺰﯾا ﻪﺘﺴﺑ ﻢﺘﺴﯿﺳ ﮏﯾ ياﺮﺑ ﯽﯾﺎﯿﻤﯿﺷ
Advanced Combustion
Fraction of CO2 un-dissociated (1-α)
dS ≥ 0
ﮐ ﯽﻣ اﺪﯿﭘ ﺖﻔﯿﺷ ﻢﻤﯾﺰﮐﺎﻣ ﯽﭘوﺮﺘﻧآ ﺎﺑ ﻪﻄﻘﻧ ﺖﻤﺳ ﻪﺑ دﻮﺧ ﻪﺑ دﻮﺧ ﻢﺘﺴﯿﺳ ﺐﯿﮐﺮﺗ
ﺪﻨ . نﺪﯿﺳر ﺎﺑ
ﺪﻫد يور ﺪﻧاﻮﺗ ﯽﻤﻧ ﻢﺘﺴﯿﺳ ﺐﯿﮐﺮﺗ رد يﺮﯿﯿﻐﺗ ﭻﯿﻫ ﯽﭘوﺮﺘﻧآ ﻢﻤﯾﺰﮐﺎﻣ ﻪﻄﻘﻧ ﻪﺑ .
(dS)
U,V,m=0
ﺪﻨﯾآﺮﻓ مﺎﺠﻧا ﺖﻬﺟ
:
لدﺎﻌﺗ طﺮﺷ
:
Advanced Numerical Methods 5
ﮏﯿﻣﺎﻨﯾدﻮﻣﺮﺗ مود نﻮﻧﺎﻗ :
ﺲﺒﯿﮔ دازآ يژﺮﻧا
يژﺮﻧا
دازآ ﺲﺒﯿﮔ
) Gibbs (
ﺎﺑ
ﯽﻓﺮﻌﻣ يژﺮﻧا
دازآ ﺲﺒﯿﮔ
:
𝒅𝒅𝑮𝑮 = 𝒅𝒅𝒅𝒅 + 𝑷𝑷𝒅𝒅𝑷𝑷 + 𝑷𝑷𝒅𝒅𝑷𝑷 − 𝑻𝑻𝒅𝒅𝑻𝑻 − 𝑻𝑻𝒅𝒅𝑻𝑻 dP=0
dT=0
ﻢﯾراد رﺎﮐ و ﺮﺳ ﺖﺑﺎﺛ رﺎﺸﻓ و ﺎﻣد ﻂﯾاﺮﺷ ﺎﺑ ﯽﻗاﺮﺘﺣا يﺎﻫدﺮﺑرﺎﮐ زا يرﺎﯿﺴﺑ رد :
Advanced Combustion
𝟏𝟏𝒔𝒔𝒔𝒔 𝑳𝑳𝑳𝑳𝑳𝑳: 𝒅𝒅𝒅𝒅 = 𝜹𝜹𝜹𝜹 − 𝜹𝜹𝑾𝑾 = 𝜹𝜹𝜹𝜹 − 𝐏𝐏𝐏𝐏𝐏𝐏 𝟐𝟐𝒏𝒏𝒅𝒅 𝑳𝑳𝑳𝑳𝑳𝑳: 𝒅𝒅𝑻𝑻 ≥ 𝜹𝜹𝜹𝜹
𝑻𝑻
𝒅𝒅𝒅𝒅 + 𝐏𝐏𝐏𝐏𝐏𝐏 − 𝐓𝐓𝐏𝐏𝐓𝐓 ≤ 𝟎𝟎
𝑮𝑮 = 𝑯𝑯 − 𝑻𝑻𝑻𝑻 = 𝒅𝒅 + 𝑷𝑷𝑷𝑷 − 𝑻𝑻𝑻𝑻
𝒅𝒅𝑮𝑮 = 𝒅𝒅𝒅𝒅 + 𝑷𝑷𝒅𝒅𝑷𝑷 − 𝑻𝑻𝒅𝒅𝑻𝑻 ≤ 𝟎𝟎
ياﺮﺑ
ﮏﯾ ﻢﺘﺴﯿﺳ ﻪﺘﺴﺑ
ﺎﺑ ﺎﻣد و رﺎﺸﻓ ﺖﺑﺎﺛ
ﺶﻨﮐاو ﯽﯾﺎﯿﻤﯿﺷ
رد ﺖﻬﺟ ﺶﻫﺎﮐ
يژﺮﻧا آ
داز .ﺪﻨﮐ ﯽﻣ ﺖﮐﺮﺣ ﺲﺒﯿﮔ
Advanced Numerical Methods 6
ﮏﯿﻣﺎﻨﯾدﻮﻣﺮﺗ مود نﻮﻧﺎﻗ :
ﺲﺒﯿﮔ دازآ يژﺮﻧا
Advanced Combustion
𝒅𝒅𝑮𝑮 𝑻𝑻,𝑷𝑷 < 𝟎𝟎 𝒅𝒅𝑮𝑮 𝑻𝑻,𝑷𝑷,𝒎𝒎 = 𝟎𝟎
ﺪﻨﯾآﺮﻓ مﺎﺠﻧا ﺖﻬﺟ
:
لدﺎﻌﺗ طﺮﺷ
:
Advanced Numerical Methods 7
ﮏﯿﻣﺎﻨﯾدﻮﻣﺮﺗ مود نﻮﻧﺎﻗ :
ﺲﺒﯿﮔ دازآ يژﺮﻧا
Advanced Combustion
ياﺮﺑ
ﯽﻃﻮﻠﺨﻣ زا
يﺎﻫزﺎﮔ
،لآ هﺪﯾا ﻊﺑﺎﺗ
ﺲﺒﯿﮔ ﻪﻧﻮﮔ
ما i زا ﻪﻄﺑار ﺮﯾز
ﺖﺳد ﻪﺑ ﺪﯾآ ﯽﻣ
:
ﻪﺑ ﻪﮐ يرﻮﻃ
�𝒈𝒈𝒊𝒊,𝑻𝑻𝟎𝟎 ﻊﺑﺎﺗ
ﺲﺒﯿﮔ ﺮﺼﻨﻋ
ﺺﻟﺎﺧ رد
رﺎﺸﻓ دراﺪﻧﺎﺘﺳا
و 𝑷𝑷𝒊𝒊 رﺎﺸﻓ ﯽﺋﺰﺟ
ﻪﻧﻮﮔ ﺖﺳا
.
ياﺮﺑ
ﻢﺘﺴﯿﺳ ﯽﺸﻨﮐاو
ﻊﺑﺎﺗ ﺲﺒﯿﮔ
ﻞﯿﮑﺸﺗ ترﻮﺻ ﻪﺑ
ﺮﯾز ﻒﯾﺮﻌﺗ ﻮﺷ ﯽﻣ
د:
ﺎﻫ v’
ﺐﯾﺮﺿ يﺮﺘﻣﻮﯿﮐﻮﺘﺳا
يﺎﻫ نﺎﻤﻟا ﻞﯿﮑﺸﺗ
هﺪﻨﻫد ﻪﻧﻮﮔ
درﻮﻣ ﺮﻈﻧ
ﺪﻨﺘﺴﻫ .
ﻊﺑﺎﺗ
ﺲﺒﯿﮔ ياﺮﺑ
ﯽﻃﻮﻠﺨﻣ زا
يﺎﻫزﺎﮔ لآ هﺪﯾا
ترﻮﺻ ﻪﺑ ﺮﯾز
ﻒﯾﺮﻌﺗ دﻮﺷ ﯽﻣ
:
�𝒈𝒈𝒊𝒊,𝑻𝑻 = �𝒈𝒈𝒊𝒊,𝑻𝑻𝟎𝟎 + 𝑹𝑹𝒖𝒖𝑻𝑻𝑻𝑻𝒏𝒏 𝑷𝑷𝒊𝒊 𝑷𝑷𝟎𝟎
�𝒈𝒈𝒇𝒇,𝒊𝒊𝟎𝟎 𝑻𝑻 = �𝒈𝒈𝒊𝒊,𝑻𝑻𝟎𝟎 − �
𝒋𝒋 𝒆𝒆𝑻𝑻𝒆𝒆𝒎𝒎𝒆𝒆𝒏𝒏𝒔𝒔𝒔𝒔
́𝒗𝒗𝒋𝒋 �𝒈𝒈𝒋𝒋,𝑻𝑻𝟎𝟎
𝑮𝑮𝒎𝒎𝒊𝒊𝒎𝒎 = � 𝑵𝑵𝒊𝒊 �𝒈𝒈𝒊𝒊,𝑻𝑻 = � 𝑵𝑵𝒊𝒊 �𝒈𝒈𝒋𝒋,𝑻𝑻𝟎𝟎 + 𝑹𝑹𝒖𝒖𝑻𝑻𝑻𝑻𝒏𝒏 𝑷𝑷𝒊𝒊 𝑷𝑷𝟎𝟎
Advanced Numerical Methods 8
ﮏﯿﻣﺎﻨﯾدﻮﻣﺮﺗ مود نﻮﻧﺎﻗ :
ﺲﺒﯿﮔ دازآ يژﺮﻧا
Advanced Combustion
ياﺮﺑ
ﺎﻣد و رﺎﺸﻓ ﺖﺑﺎﺛ
طﺮﺷ لدﺎﻌﺗ
ﺖﺳد ﻪﺑ ﺪﻣآ
:
زا
ﯽﯾﺎﺠﻧآ ﻪﮐ
ﺎﻣد و رﺎﺸﻓ طﻮﻠﺨﻣ
ﺖﺑﺎﺛ ﺖﺳا
.)
∑ 𝒅𝒅𝑷𝑷𝒊𝒊 = 𝟎𝟎 (
𝒅𝒅𝑮𝑮
𝒎𝒎𝒊𝒊𝒎𝒎= 𝟎𝟎
� 𝒅𝒅𝑵𝑵𝒊𝒊 �𝒈𝒈𝒋𝒋,𝑻𝑻𝟎𝟎 + 𝑹𝑹𝒖𝒖𝑻𝑻𝑻𝑻𝒏𝒏 𝑷𝑷𝒊𝒊
𝑷𝑷𝟎𝟎 + � 𝑵𝑵𝒊𝒊 𝒅𝒅 �𝒈𝒈𝒋𝒋,𝑻𝑻𝟎𝟎 + 𝑹𝑹𝒖𝒖𝑻𝑻𝑻𝑻𝒏𝒏 𝑷𝑷𝒊𝒊
𝑷𝑷𝟎𝟎 = 𝟎𝟎
𝒅𝒅𝑮𝑮𝒎𝒎𝒊𝒊𝒎𝒎 = 𝟎𝟎 = � 𝒅𝒅𝑵𝑵𝒊𝒊 �𝒈𝒈𝒋𝒋,𝑻𝑻𝟎𝟎 + 𝑹𝑹𝒖𝒖𝑻𝑻𝑻𝑻𝒏𝒏 𝑷𝑷𝒊𝒊 𝑷𝑷𝟎𝟎
Advanced Numerical Methods 9
ﺺﺨﺸﻣ رﺎﺸﻓ و ﺎﻣد رد هدﺎﺳ ﺶﻨﮐاو ﮏﯾ ﯽﯾﺎﯿﻤﯿﺷ لدﺎﻌﺗ
Advanced Combustion
ﺶﻨﮐاو
ﺮﯾز ﻪﮐ رد ﺎﻣد و رﺎﺸﻓ ﺖﺑﺎﺛ
يور ﺪﻫد ﯽﻣ
ار رد ﺮﻈﻧ ﺪﯾﺮﯿﮕﺑ
:
ضﺮﻓ
ﻢﯿﻨﮐ ﯽﻣ ﻪﮐ
4 ﻪﻧﻮﮔ قﻮﻓ
رد لﺎﺣ لدﺎﻌﺗ
ﯽﯾﺎﯿﻤﯿﺷ ﺪﻨﺘﺴﻫ
. ﺲﭙﺳ ﺶﻨﮐاو
ﻪﺑ هزاﺪﻧا
ﺖﯾﺎﻬﻨﯿﺑ ﮏﭼﻮﮐ
رد ﺖﻬﺟ ﺖﻓر
ﺶﯿﭘ يور
ﺪﻨﮐ ﯽﻣ .
ﻦﯾا عﻮﺿﻮﻣ ﺚﻋﺎﺑ
ﺶﻫﺎﮐ داﺪﻌﺗ
لﻮﻣ .دﻮﺷ ﯽﻣ D و C لﻮﻣ ﺶﯾاﺰﻓا و B و A يﺎﻫ ﻪﻧﻮﮔ
ﺮﯿﯿﻐﺗ
رد داﺪﻌﺗ لﻮﻣ
ﺮﻫ ﻪﻧﻮﮔ ﯽﯾﺎﯿﻤﯿﺷ
ﺐﺳﺎﻨﺘﻣ ﺎﺑ
ﺐﯾﺮﺿ يﺮﺘﻣﻮﯿﮐﻮﺘﺳا
نآ ﺑ ﯽﻣ ﺪﺷﺎ :
راﺪﻘﻣ
ﻒﻟﺎﺨﻣ 𝜺𝜺 ﺮﻔﺻ
ﺖﺳا .
ﻦﯿﻨﭽﻤﻫ P0=1 atm
.
𝒗𝒗
𝑨𝑨𝑨𝑨 + 𝒗𝒗
𝑩𝑩𝑩𝑩 ⇔ 𝒗𝒗
𝒄𝒄𝑪𝑪 + 𝒗𝒗
𝒅𝒅𝑫𝑫
ε ν
ε ν ε
ν ε
ν ε
ν
i i
D D
C C
B B
A A
dn
dn dn
dn dn
=
⇒
=
=
−
=
−
=
𝒅𝒅𝑮𝑮 𝑻𝑻,𝑷𝑷 = � �𝒈𝒈𝒋𝒋,𝑻𝑻𝟎𝟎 + 𝑹𝑹𝒖𝒖𝑻𝑻𝑻𝑻𝒏𝒏 𝑷𝑷𝒊𝒊
𝑷𝑷𝟎𝟎 𝒗𝒗𝒊𝒊𝜺𝜺 = 𝟎𝟎 لدﺎﻌﺗ طﺮﺷ
Advanced Numerical Methods 10
ﺺﺨﺸﻣ رﺎﺸﻓ و ﺎﻣد رد هدﺎﺳ ﺶﻨﮐاو ﮏﯾ ﯽﯾﺎﯿﻤﯿﺷ لدﺎﻌﺗ
Advanced Combustion
−�𝒈𝒈𝑨𝑨𝟎𝟎𝒗𝒗𝑨𝑨 − �𝒈𝒈𝑩𝑩𝟎𝟎𝒗𝒗𝑩𝑩 + �𝒈𝒈𝑪𝑪𝟎𝟎𝒗𝒗𝑪𝑪 + �𝒈𝒈𝑫𝑫𝟎𝟎 𝒗𝒗𝑫𝑫
+ 𝑹𝑹𝒖𝒖𝑻𝑻 −𝒗𝒗𝑨𝑨𝑻𝑻𝒏𝒏𝑷𝑷𝑨𝑨 − 𝒗𝒗𝑩𝑩𝑻𝑻𝒏𝒏𝑷𝑷𝑩𝑩 + 𝒗𝒗𝑪𝑪𝑻𝑻𝒏𝒏𝑷𝑷𝑪𝑪 + 𝒗𝒗𝑫𝑫𝑻𝑻𝒏𝒏𝑷𝑷𝑫𝑫 = 𝟎𝟎
ﻒﯾﺮﻌﺗ ﺎﺑ
∆𝑮𝑮𝟎𝟎 = −�𝒈𝒈𝑨𝑨𝟎𝟎𝒗𝒗𝑨𝑨 − �𝒈𝒈𝑩𝑩𝟎𝟎𝒗𝒗𝑩𝑩 + �𝒈𝒈𝑪𝑪𝟎𝟎𝒗𝒗𝑪𝑪 + �𝒈𝒈𝑫𝑫𝟎𝟎 𝒗𝒗𝑫𝑫 :
ﺖﺷاد ﻢﯿﻫاﻮﺧ
−∆𝑮𝑮𝟎𝟎 :
𝑹𝑹𝒖𝒖𝑻𝑻 = 𝐥𝐥𝐥𝐥 𝑷𝑷𝑪𝑪𝒗𝒗𝑪𝑪 𝑷𝑷𝑫𝑫𝒗𝒗𝑫𝑫 𝑷𝑷𝑨𝑨𝒗𝒗𝑨𝑨 𝑷𝑷𝑩𝑩𝒗𝒗𝑩𝑩
،ﯽﮔدﺎﺳ ياﺮﺑ لدﺎﻌﺗ ﺖﺑﺎﺛ
KP دﻮﺷ ﯽﻣ ﻒﯾﺮﻌﺗ ﺮﯾز ترﻮﺻ ﻪﺑ ،
−∆𝑮𝑮𝟎𝟎 :
𝑹𝑹𝒖𝒖𝑻𝑻 = 𝐥𝐥𝐥𝐥𝑲𝑲𝑷𝑷 𝐊𝐊𝐏𝐏 = 𝑷𝑷𝑪𝑪𝒗𝒗𝑪𝑪 𝑷𝑷𝑫𝑫𝒗𝒗𝑫𝑫 𝑷𝑷𝑨𝑨𝒗𝒗𝑨𝑨 𝑷𝑷𝑩𝑩𝒗𝒗𝑩𝑩
total i
i X P
P =
B A D C B
A C D
total B
A
D C
P P
X X
X T X
K ν ν ν ν ν ν
ν
ν + − −
= ) (
Advanced Numerical Methods 11 Advanced Combustion
لدﺎﻌﺗ ﺖﺑﺎﺛ
Logarithms to base e of the equilibrium constant Kp
The equilibrium constant Kp for the reaction vAA + vBB vCC + vDD is defined as:
B A
D C
v B v A
v D v C
p P P
P K ≡ P
Temp.
K H22H O2 2O N2 2N H2O H2
+½O2 H2O ½H2
+OH CO2 CO
+½O2 ½N2+½O2 NO 298500
10001200 14001600 18002000 22002400 26002800 30003200 34003600 38004000 45005000 55006000
-164.005 -92.827 -39.803 -30.874 -24.463 -19.637 -15.866 -12.840 -10.353 -8.276 -6.517 -5.002 -3.685 -2.534 -1.516 -0.609 0.202 0.934 2.486 3.725 4.743 5.590
-186.975 -105.630 -45.150 -35.005 -27.742 -22.285 -18.030 -14.622 -11.827 -9.497 -7.521 -5.826 -4.357 -3.072 -1.935 -0.926 -0.019 0.796 2.513 3.895 5.023 5.963
-367.480 -213.372 -99.127 -80.011 -66.329 -56.055 -48.051 -41.645 -36.391 -32.011 -28.304 -25.117 -22.359 -19.937 -17.800 -15.898 -14.199 -12.660 -9.414 -6.807 -4.666 -2.865
-92.208 -52.691 -23.163 -18.182 -14.609 -11.921 -9.826 -8.145 -6.768 -5.619 -4.648 -3.812 -3.086 -2.451 -1.891 -1.392 -0.945 -0.542 0.312 0.996 1.560 2.032
-106.208 -60.281 -26.034 -20.283 -16.099 -13.066 -10.657 -8.728 -7.148 -5.832 -4.719 -3.763 -2.937 -2.212 -1.576 -1.088 -0.501 -0.044 0.920 1.689 2.318 2.843
-103.762 -57.616 -23.529 -17.871 -13.842 -10.830 -8.497 -6.635 -5.120 -3.860 -2.801 -1.894 -1.111 -0.429 0.169 0.701 1.176 1.599 2.490 3.197 3.771 4.245
-35.052 -20.295 -9.388 -7.569 -6.270 -5.294 -4.536 -3.931 -3.433 -3.019 -2.671 -2.372 -2.114 -1.888 -1.690 -1.513 -1.356 -1.216 -0.921 -0.686 -0.497 -0.341
Advanced Numerical Methods 12 Advanced Combustion
لدﺎﻌﺗ ﺖﺑﺎﺛ
Logarithms to base 10 of the equilibrium constant Kp
Advanced Numerical Methods 13
لدﺎﻌﺗ ﺖﺑﺎﺛ Equilibrium constant )
(
لﺎﺜﻣ
9:
ﺐﯿﮐﺮﺗ ﯽﻟدﺎﻌﺗ
ﻪﯾﺰﺠﺗ ﮏﯾ
لﻮﻣ CO2
ﻪﺑ و CO
O2 رد يﺎﻣد 3200 K
و رﺎﺸﻓ 1 atm
ار ﻦﯿﯿﻌﺗ
ﺪﯿﻨﮐ .
ﺶﻨﮐاو ﯽﻟدﺎﻌﺗ
ﻪﯾﺰﺠﺗ CO2
ترﻮﺻ ﻪﺑ ﺮﯾز
ﺖﺳا :
ﻦﯾا ﺶﻨﮐاو ار
ناﻮﺗ ﯽﻣ ﻪﺑ
ترﻮﺻ ﺮﯾز
ﯽﺴﯾﻮﻧزﺎﺑ دﺮﮐ
.
ﻦﯾاﺮﺑﺎﻨﺑ :
CO2 CO+0.5O2 v1CO2 v3CO+v4O2
𝐊𝐊𝐏𝐏 = 𝑿𝑿𝑪𝑪𝑪𝑪𝒗𝒗𝟑𝟑 𝑿𝑿𝑪𝑪𝒗𝒗𝟒𝟒𝟐𝟐
𝑿𝑿𝑪𝑪𝑪𝑪𝒗𝒗𝟏𝟏 𝟐𝟐 𝑷𝑷𝒔𝒔𝒕𝒕𝒔𝒔𝒗𝒗𝟑𝟑+𝒗𝒗𝟒𝟒−𝒗𝒗𝟏𝟏 𝐊𝐊𝐏𝐏 = 𝑿𝑿𝑪𝑪𝑪𝑪 𝑿𝑿𝑪𝑪𝟏𝟏 𝟐𝟐⁄𝟐𝟐
𝑿𝑿𝑪𝑪𝑪𝑪𝟐𝟐 𝟏𝟏 𝟏𝟏 𝟐𝟐⁄
Advanced Numerical Methods 14
لدﺎﻌﺗ ﺖﺑﺎﺛ Equilibrium constant )
(
لﺎﺜﻣ
9 ) ﻪﻣادا (:
رد ﻪﮐ ﯽﺗرﻮﺻ رد
ﺶﻨﮐاو ﯽﻌﻗاو
CO2 ﺎﺗ
ﻪﺟرد
Advanced Numerical Methods 15
لدﺎﻌﺗ ﺖﺑﺎﺛ Equilibrium constant )
(
لﺎﺜﻣ
10 :
ﯽﯾﺎﻣد ﻪﮐ
رد نآ 5
% نﮋﯿﺴﮐا ود
ﯽﻤﺗا )
O2 ( رد رﺎﺸﻓ 3 atm
ﻪﺑ نﮋﯿﺴﮐا ﮏﺗ
ﯽﻤﺗا )
(O ﻪﯾﺰﺠﺗ
دﻮﺷ ﯽﻣ ار
ﻦﯿﯿﻌﺗ ﺪﯿﻨﮐ
.
ياﺮﺑ ﺖﻟﻮﻬﺳ
1 kmol زا
O2 ار رد ﺮﻈﻧ ﻢﯾﺮﯿﮔ ﯽﻣ .
ﺶﻨﮐاو ﻪﯾﺰﺠﺗ
ﯽﻟدﺎﻌﺗ O2
ﻪﺑ ﻞﮑﺷ ﺮﯾز
ﺖﺳا :
رد ﻪﮐ ﯽﺗرﻮﺻ رد
ﺶﻨﮐاو ﯽﻌﻗاو
O2 ﺎﺗ ﻪﺟرد
Advanced Numerical Methods 16
لدﺎﻌﺗ ﺖﺑﺎﺛ Equilibrium constant )
(
لﺎﺜﻣ
10 ) ﻪﻣادا (:
ﺎﺑ عﻮﺟر ﻪﺑ
لوﺪﺟ طﻮﺑﺮﻣ
ﻪﺑ يﺎﻫ ﺖﺑﺎﺛ لدﺎﻌﺗ
يﺎﻣد ﻢﺘﺴﯿﺳ
ﺖﺳد ﻪﺑ ﺪﯾآ ﯽﻣ
:
يﺎﻣد ﯽﯾﺎﻬﻧ
ﺎﺑ ﯽﺑﺎﯾ نﺎﯿﻣ ﻦﯿﺑ
ود يﺎﻣد و 3100
ﻦﯾﻮﻠﮐ 3200 ﺖﺳد ﻪﺑ
ﺪﯾآ ﯽﻣ .
𝑻𝑻𝒕𝒕𝒈𝒈𝐊𝐊𝐏𝐏 = 𝑻𝑻𝒕𝒕𝒈𝒈 𝟎𝟎.𝟎𝟎𝟑𝟑𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎 = −𝟏𝟏. 𝟎𝟎𝟐𝟐𝟐𝟐
𝑻𝑻 = 𝟑𝟑𝟏𝟏𝟑𝟑𝟐𝟐.𝟔𝟔 𝐊𝐊
ﻪﯾﺰﺠﺗ ﺪﺻرد دوﺮﺑ ﺮﺗﻻﺎﺑ ﺎﻣد ﺮﮔا O2
دﻮﺷ ﯽﻣ ﺮﺘﺸﯿﺑ .
Advanced Numerical Methods 17
لدﺎﻌﺗ ﺖﺑﺎﺛ درﻮﻣ رد ﯽﺗﺎﮑﻧ
Advanced Combustion
ﺖﺑﺎﺛ
لدﺎﻌﺗ
KP
ﺎﻬﻨﺗ ﯽﻌﺑﺎﺗ
زا ﺎﻣد ﺖﺳا .
ﺖﺑﺎﺛ
لدﺎﻌﺗ ﺶﻨﮐاو
سﻮﮑﻌﻣ 1/KP
ﺖﺳا .
ﺮﻫ
ﻪﭼ KP ﺮﺗ گرﺰﺑ
،ﺪﺷﺎﺑ قاﺮﺘﺣا
ﺮﺗ ﻞﻣﺎﮐ دﻮﺷ ﯽﻣ
.
دﻮﺟو
زﺎﮔ ﯽﺑ ﺮﺛا ﺮﺑ يور ﺐﯿﮐﺮﺗ
ﯽﻟدﺎﻌﺗ ﺮﺛا
ﯽﻣ دراﺬﮔ ﻪﻧ
ﺮﺑ يور KP
.
ﺮﻫ
هﺎﮔ ﺐﺋاﺮﺿ يﺮﺘﻣﻮﯿﮐﻮﺘﺳا
2 ﺮﺑاﺮﺑ
،دﻮﺷ راﺪﻘﻣ
KP ﻪﺑ ناﻮﺗ ود
ﺪﺳر ﯽﻣ .
H2+0.5O2 H2O at 1 atm H2+0.5O2 H2O at 5 atm H2+0.5O2+3N2 H2O+3N2 at 3 atm H2+2O2+5N2 H2O+1.5O2+5N2 at 2 atm
H2+0.5O2 H2O
H2OH2+0.5O2
𝐊𝐊𝐏𝐏 = 𝑿𝑿𝑯𝑯𝟏𝟏𝟐𝟐𝑪𝑪
𝑿𝑿𝑯𝑯𝟏𝟏𝟐𝟐 𝑿𝑿𝑪𝑪𝟎𝟎.𝟎𝟎𝟐𝟐 𝑷𝑷𝒔𝒔𝒕𝒕𝒔𝒔−𝟎𝟎.𝟎𝟎 𝐊𝐊𝐏𝐏 = 𝑿𝑿𝑯𝑯𝟏𝟏𝟐𝟐 𝑿𝑿𝑪𝑪𝟎𝟎.𝟎𝟎𝟐𝟐
𝑿𝑿𝑯𝑯𝟏𝟏𝟐𝟐𝑪𝑪 𝑷𝑷𝒔𝒔𝒕𝒕𝒔𝒔+𝟎𝟎.𝟎𝟎
Advanced Numerical Methods 18
ﺺﺨﺸﻣ رﺎﺸﻓ و ﺎﻣد رد نﺎﻣﺰﻤﻫ يﺎﻫ ﺶﻨﮐاو ﯽﯾﺎﯿﻤﯿﺷ لدﺎﻌﺗ
Advanced Combustion
ضﺮﻓ
ﺪﯿﻨﮐ ود
ﺶﻨﮐاو ﺮﯾز
ترﻮﺻ ﻪﺑ نﺎﻣﺰﻤﻫ
رد ﺎﻣد و رﺎﺸﻓ ﺖﺑﺎﺛ
قﺎﻔﺗا ﯽﻣ
ﺘﻓا ﺪ :
ﺎﺑ
لﺎﻤﻋا طﺮﺷ
لدﺎﻌﺗ ياﺮﺑ
ﻦﯾا ود ﺶﻨﮐاو نﺎﻣﺰﻤﻫ
و ﺎﺑ يﺪﻧور ﻪﺑﺎﺸﻣ
ﺎﺑ تﺎﺒﺳﺎﺤﻣ
ﮏﺗ :ﻢﯾراد ﺶﻨﮐاو
𝒗𝒗
𝟏𝟏𝑨𝑨
𝟏𝟏+ 𝒗𝒗
𝟐𝟐𝑨𝑨
𝟐𝟐⇔ 𝒗𝒗
𝟑𝟑𝑨𝑨
𝟑𝟑+ 𝒗𝒗
𝟒𝟒𝑨𝑨
𝟒𝟒𝒗𝒗
𝟎𝟎𝑨𝑨
𝟎𝟎+ 𝒗𝒗
𝟔𝟔𝑨𝑨
𝟔𝟔⇔ 𝒗𝒗
𝟎𝟎𝑨𝑨
𝟎𝟎+ 𝒗𝒗
𝟖𝟖𝑨𝑨
𝟖𝟖2 1 4 3 2
1
4 3
2 1
4 3
1( ) ν ν ν ν ν ν
ν
ν + − −
= total
P P
X X
X T X
K
6 5 8 7 6
5 7 8
6 5
7 8
2( ) ν ν ν ν ν ν
ν
ν + − −
= total
P P
X X
X T X
K
ﻫ شور زا هدﺎﻔﺘﺳا ﺎﺑ ﺪﯾﺎﺑ ﻪﻟدﺎﻌﻣ ود ﻦﯾا يﺎ . دﻮﺷ ﻞﺣ نﺎﻣﺰﻤﻫ ترﻮﺻ ﻪﺑ يدﺪﻋ
𝐥𝐥𝐥𝐥𝑲𝑲𝑷𝑷𝟏𝟏 = −∆𝑮𝑮𝟏𝟏𝟎𝟎
𝑹𝑹𝒖𝒖𝑻𝑻 , ∆𝑮𝑮𝟏𝟏𝟎𝟎 = −�𝒈𝒈𝟏𝟏𝟎𝟎𝒗𝒗𝟏𝟏 − �𝒈𝒈𝟏𝟏𝟎𝟎𝒗𝒗𝟏𝟏 + �𝒈𝒈𝟑𝟑𝟎𝟎𝒗𝒗𝟑𝟑 + �𝒈𝒈𝟒𝟒𝟎𝟎𝒗𝒗𝟒𝟒 𝐥𝐥𝐥𝐥𝑲𝑲𝑷𝑷𝟐𝟐 = −∆𝑮𝑮𝟐𝟐𝟎𝟎
𝑹𝑹𝒖𝒖𝑻𝑻 , ∆𝑮𝑮𝟐𝟐𝟎𝟎 = −�𝒈𝒈𝟎𝟎𝟎𝟎𝒗𝒗𝟎𝟎 − �𝒈𝒈𝟔𝟔𝟎𝟎𝒗𝒗𝟔𝟔 + �𝒈𝒈𝟎𝟎𝟎𝟎𝒗𝒗𝟎𝟎 + �𝒈𝒈𝟖𝟖𝟎𝟎𝒗𝒗𝟖𝟖
Advanced Numerical Methods 19
لدﺎﻌﺗ ﺖﺑﺎﺛ Equilibrium constant )
(
لﺎﺜﻣ
11 :
ﺖﻈﻠﻏ ﯽﻟدﺎﻌﺗ
يﺎﻫ ﺶﻨﮐاو ﺮﯾز
ار ياﺮﺑ رﺎﺸﻓ
1 atm و
يﺎﻣد 3000 K
ﻪﺒﺳﺎﺤﻣ ﺪﯿﻨﮐ
. رد
عوﺮﺷ .دراد دﻮﺟو N2 لﻮﻣ 0.5 و O2 لﻮﻣ 0.5 ، CO2 لﻮﻣ 1 ﺶﻨﮐاو
ﺎﺑ هدﺎﻔﺘﺳا زا
ﻪﺟرد ﺶﻨﮐاو
ε1 2 و يﺎﻫ ﺶﻨﮐاو ε قﻮﻓ
رد ﻂﯾاﺮﺷ ﯽﻌﻗاو
ار ناﻮﺗ ﯽﻣ ترﻮﺻ ﻪﺑ
ﺮﯾز :ﺖﺷﻮﻧ
ﻦﯾاﺮﺑﺎﻨﺑ :
CO2 CO+0.5O2 0.5O2 +0.5N2 NO
CO2 +0.5O2 +0.5N2 (1-ε1)CO2+ ε1CO+(0.5-ε2/2 +ε1/2 )O2+(0.5-ε2/2)N2 ε2NO
CO2 (1-ε1)CO2+ ε1CO+ε1/2 O2
0.5O2+ 0.5N2 (0.5-ε2/2 )O2+ (0.5-ε2/2 )N2 +ε2 NO
Advanced Numerical Methods 20
لدﺎﻌﺗ ﺖﺑﺎﺛ Equilibrium constant )
(
لﺎﺜﻣ
11 ) ﻪﻣادا (:
ﺮﺴﮐ ﯽﻟﻮﻣ
يﺎﻫ ﻪﻧﻮﮔ رد
لﺎﺣ لدﺎﻌﺗ
ترﻮﺻ ﻪﺑ ﺮﯾز
ﺖﺳا :
زا لواﺪﺟ طﻮﺑﺮﻣ
ﻪﺑ يﺎﻫ ﺖﺑﺎﺛ لدﺎﻌﺗ
ياﺮﺑ يﺎﻫ ﺶﻨﮐاو
ﻪﯾﺰﺠﺗ ﯽﻟدﺎﻌﺗ
درﻮﻣ ﺮﻈﻧ
ﻢﯾراد :
𝑵𝑵𝒔𝒔𝒕𝒕𝒔𝒔 = 𝟐𝟐 + 𝜺𝜺𝟏𝟏⁄𝟐𝟐 𝑿𝑿𝑪𝑪𝑪𝑪𝟐𝟐 = 1−ε1
𝟐𝟐+ ⁄𝜺𝜺𝟏𝟏 𝟐𝟐 ; 𝑿𝑿𝑪𝑪𝑪𝑪 = ε1
𝟐𝟐+ ⁄𝜺𝜺𝟏𝟏 𝟐𝟐 ; 𝑿𝑿𝑪𝑪𝟐𝟐= 1−ε2 +ε1
𝟒𝟒+𝜺𝜺𝟏𝟏
𝑿𝑿𝑵𝑵𝟐𝟐 = 1−ε2
𝟒𝟒+𝜺𝜺𝟏𝟏 𝑿𝑿𝑵𝑵𝑪𝑪 = ε2
𝟐𝟐+ ⁄𝜺𝜺𝟏𝟏 𝟐𝟐
𝑻𝑻𝒕𝒕𝒈𝒈𝐊𝐊𝐏𝐏𝟏𝟏 𝟑𝟑𝟎𝟎𝟎𝟎𝟎𝟎 𝐊𝐊 = −𝟎𝟎. 𝟒𝟒𝟖𝟖𝟎𝟎 𝐊𝐊𝐏𝐏 = 𝟎𝟎. 𝟑𝟑𝟐𝟐𝟎𝟎𝟐𝟐 𝑻𝑻𝒕𝒕𝒈𝒈𝐊𝐊𝐏𝐏𝟐𝟐 𝟑𝟑𝟎𝟎𝟎𝟎𝟎𝟎 𝐊𝐊 = −𝟎𝟎.𝟗𝟗𝟏𝟏𝟑𝟑 𝐊𝐊𝐏𝐏 = 𝟎𝟎. 𝟏𝟏𝟐𝟐𝟐𝟐𝟐𝟐
Advanced Numerical Methods 21
لدﺎﻌﺗ ﺖﺑﺎﺛ Equilibrium constant )
(
لﺎﺜﻣ
11 ) ﻪﻣادا (:
رد ﻪﺠﯿﺘﻧ 𝐊𝐊𝐏𝐏𝟏𝟏 =
𝜺𝜺𝟏𝟏
𝟐𝟐 + 𝜺𝜺𝟏𝟏⁄𝟐𝟐 1−𝜺𝜺𝟐𝟐+𝜺𝜺𝟏𝟏 𝟒𝟒 + 𝜺𝜺𝟏𝟏
𝟏𝟏 𝟐𝟐⁄
1−𝜺𝜺𝟏𝟏 𝟐𝟐 + 𝜺𝜺𝟏𝟏⁄𝟐𝟐
= 𝟎𝟎.𝟑𝟑𝟐𝟐𝟎𝟎𝟐𝟐
𝐊𝐊𝐏𝐏𝟐𝟐 =
𝜺𝜺𝟐𝟐 𝟐𝟐 + 𝜺𝜺𝟏𝟏⁄𝟐𝟐 1−𝜺𝜺𝟐𝟐+𝜺𝜺𝟏𝟏
𝟒𝟒 + 𝜺𝜺𝟏𝟏
𝟏𝟏 𝟐𝟐⁄ 1−𝜺𝜺𝟐𝟐 𝟒𝟒 + 𝜺𝜺𝟏𝟏
𝟏𝟏 𝟐𝟐⁄ = 𝟎𝟎. 𝟏𝟏𝟐𝟐𝟐𝟐𝟐𝟐
لﻮﻬﺠﻣ ود و ﻪﻟدﺎﻌﻣ ود ﯽﻄﺧﺮﯿﻏ
�𝜺𝜺𝟏𝟏 = 𝟎𝟎.𝟑𝟑𝟎𝟎𝟑𝟑𝟔𝟔 𝜺𝜺𝟐𝟐 = 𝟎𝟎.𝟎𝟎𝟎𝟎𝟔𝟔𝟒𝟒
CO2 +0.5 O2 +0.5 N2 0.6264 CO2+ 0.3736 CO+0.6587 O2+0.4717 N2 + 0.0564 NO