• Tidak ada hasil yang ditemukan

PDF لﺮﺘﻨﮐ يﺎﻫ ﻢﺘﺴﯿﺳ ﯽﺣاﺮﻃ و ﻞﯿﻠﺤﺗ ﺖﻟﺎﺣ يﺎﻀﻓ هزﻮﺣ رد هﺮﯿﻐﺘﻣﺪﻨﭼ

N/A
N/A
Protected

Academic year: 2025

Membagikan "PDF لﺮﺘﻨﮐ يﺎﻫ ﻢﺘﺴﯿﺳ ﯽﺣاﺮﻃ و ﻞﯿﻠﺤﺗ ﺖﻟﺎﺣ يﺎﻀﻓ هزﻮﺣ رد هﺮﯿﻐﺘﻣﺪﻨﭼ"

Copied!
59
0
0

Teks penuh

(1)

لﺮﺘﻨﮐ يﺎﻫ ﻢﺘﺴﯿﺳ ﯽﺣاﺮﻃ و ﻞﯿﻠﺤﺗ ﺖﻟﺎﺣ يﺎﻀﻓ هزﻮﺣ رد هﺮﯿﻐﺘﻣﺪﻨﭼ

ﻖﯾﺪﺻ ﯽﮐﺎﺧ ﯽﻠﻋ لﺮﺘﻨﮐ هوﺮﮔ -

ﺮﻬﻣ 1399

(2)

2

ﻪﻣﺪﻘﻣ

ﻢﯿﻫﺎﻔﻣ  ﻪﯾﺎﭘ

: لﺮﺘﻨﮐ يﺮﯾﺬﭘ

و ﺖﯾور يﺮﯾﺬﭘ

لﺮﺘﻨﮐ  يﺮﯾﺬﭘ

ﯽﻌﺑﺎﺗ )

ﯽﺟوﺮﺧ (

ﻪﯾﺮﻈﻧ  ﻖﻘﺤﺗ

ﺶﻫﺎﮐ  ﻪﺒﺗﺮﻣ

تﻻدﺎﻌﻣ يﺎﻀﻓ

ﺖﻟﺎﺣ

ﻪﻠﭘﻮﮐد  يزﺎﺳ

ﻢﺘﺴﯿﺳ يﺎﻫ

هﺮﯿﻐﺘﻣﺪﻨﭼ ﺎﺑ

ﮏﺑﺪﯿﻓ ﺣ

ﺖﻟﺎ

(3)

ﻢﯿﻫﺎﻔﻣﻪﯾﺎﭘ

: لﺮﺘﻨﮐ يﺮﯾﺬﭘ

و ﺖﯾور ﺬﭘ

يﺮﯾ

( ) ( ) ( )

( ) ( ) ( )

, ,

rank , rank

n n n m l n

x t A x t Bu t y t Cx t Du t

A R B R C R

B m C l

× × ×

= +

= +

∈ ∈ ∈

= =

طﺮﺷ مزﻻ

و ﯽﻓﺎﮐ لﺮﺘﻨﮐ

يﺮﯾﺬﭘ ﺴﯿﺳ

ﻢﺘ :

1

n n nm

c B A B A B R ×

Φ =

ﺲﯾﺪﻧا يﺎﻫ

لﺮﺘﻨﮐ يﺮﯾﺬﭘ

ﺴﯿﺳ ﻢﺘ

:

(4)

4

1 1

1 1 1

1

1

1

1

( 2, , )Controllability indices

we have,

, max ( 1, , )Controllability index

(1 ) Partial Controllability Matrix

i

i i i

m

i c i

i i

q c

i

b A b A b

i m

b A b A b

n i m

B A B A B q n

µ

µ

µ ν

µ µ

µ

=

=

= = =

Φ = ≤ ≤

(5)

لﺎﺜﻣ ﮏﯾ

(6)

6

لﺎﺜﻣ ﮏﯾ

(7)

طﺮﺷ مزﻻ

و ﯽﻓﺎﮐ ﺖﯾور

يﺮﯾﺬﭘ ﺘﺴﯿﺳ

ﻢ.

ﺲﯾﺪﻧا يﺎﻫ

ﺖﯾور يﺮﯾﺬﭘ

ﺘﺴﯿﺳ ﻢ.

ﺲﯾﺮﺗﺎﻣ ﺖﯾور

يﺮﯾﺬﭘ ﯽﯾﺰﺟ

ﻢﺘﺴﯿﺳ .

ﻢﺘﺴﯿﺳ يﺎﻫ

لﺮﺘﻨﮐ ﺮﯾﺬﭘ

و ﺖﯾور ﺮﯾﺬﭘ

.

فﺬﺣ ﺐﻄﻗ

- ﺮﻔﺻ ﻢﺘﺴﯿﺳرد

يﺎﻫ لﺮﺘﻨﮐ

:

1 1

(sI A ) B or C sI( A )

(8)

8

لﺮﺘﻨﮐيﺮﯾﺬﭘ

و ﺖﯾور يﺮﯾﺬﭘ

رد ﻒﯿﺻﻮﺗ ﺲﯾﺮﺗﺎﻣ

ﻢﺘﺴﯿ

( ) ( ) ( ) ( )

1

P( )

( ) ( ) ( ) ( ) ( )

P s Q s

s R s W s

G s R s P s Q s W s

= 

= +

Let, ( ) 0 ( ) ( ) ( ) ( ) ( ) ( )

L s

P s L s P s Q s L s Q s

=

=

( ) ( ) 1( ) ( ) ( ) G s R s P s Q s W s

= +

ﺎﯾآ ﺶﻫﺎﮐ ﻪﺒﺗﺮﻣ

يا رد ﻞﯿﮑﺸﺗ ﺲﯾﺮﺗﺎﻣ

ﻊﺑﺎﺗ ﻞﯾﺪﺒﺗ

خر هداد ا

؟ﺖﺳ

(9)

( ) 0

( ) ( ) ( ) ( ) ( ) ( ) D s

P s P s D s R s R s D s

=

=

( ) ( ) 1( ) ( ) ( ) G s R s P s Q s W s

= +

ﻪﺑ رﻮﻃ ﻪﺑﺎﺸﻣ

،يا ﺮﮔا

:

ﺎﯾآ ﺶﻫﺎﮐ ﻪﺒﺗﺮﻣ

يا رد ﻞﯿﮑﺸﺗ ﺲﯾﺮﺗﺎﻣ

ﻊﺑﺎﺗ ﻞﯾﺪﺒﺗ

خر هداد ا

؟ﺖﺳ

(10)

10

( ) 0 i.d.z ( ) 0 o.d.z L s

D s

= ⇒

= ⇒

{ } { } { }

{ } { } { }

Let,

i.d.z, o.d.z, and

o.d.z after removing all the i.d.z, then i.o.d.z

i i

i

i i i

β γ

θ

δ γ θ

= =

=

= =

ﺪﻨﭼ ﻒﯾﺮﻌﺗ

:

(11)

لﺎﺜﻣ ﮏﯾ

(12)

12

لﺎﺜﻣ ﮏﯾ

(13)

لﺎﺜﻣ ﮏﯾ

(14)

14

(15)

{ }

{ } { } { { } { } }

{ }

( ) 0 =System matrix poles Let,

,

Then, =TFN matrix poles

i

i i i i i

i

P s α

η α β γ δ

η

= ⇒

=

ﺐﻄﻗ ﻢﺘﺴﯿﺳ

:

(16)

16

لﺎﺜﻣ ﮏﯾ

(17)

لﺮﺘﻨﮐيﺮﯾﺬﭘ

ﯽﻌﺑﺎﺗ )

ﯽﺟوﺮﺧ (

ﻒﯾﺮﻌﺗ لﺮﺘﻨﮐ

يﺮﯾﺬﭘ ﯽﺟوﺮﺧ

طﺮﺷ مزﻻ

و ﯽﻓﺎﮐ لﺮﺘﻨﮐ

يﺮﯾﺬﭘ ﯽﺟوﺮﺧ

1 n

o C B CA B CA B D

Φ = 

ﻒﯾﺮﻌﺗ لﺮﺘﻨﮐ

يﺮﯾﺬﭘ ﯽﻌﺑﺎﺗ

( ) TFN Matrix with inputs and outputs

G s m l

(18)

18

( ) ( ) ( )

( ) s.t. R ( ) ( ) ? Y s G s U s

U s Y s Y s

=

=

ﻂﯾاﺮﺷ لﺮﺘﻨﮐ

يﺮﯾﺬﭘ ﯽﻌﺑﺎﺗ

:

1. inputs outputs 2. rank ( )

m l

G s l

=

لاﻮﺳ ﯽﻠﺻا

:

ﺎﺑ هدروآﺮﺑ نﺪﺷ

ﻂﯾاﺮﺷ ﻻﺎﺑ

:

( ) T ( )[ ( ) T ( )] 1 R ( ) U s =G s G s G s Y s

(19)

لﺎﺜﻣ ﮏﯾ

(20)

20

(21)
(22)

22

ﻢﯿﻫﺎﻔﻣ  ﻪﯾﺎﭘ

: ﻖﻘﺤﺗ ﯽﻣ

لﺎﻤﯿﻧ و

ﻖﻘﺤﺗ يﺎﻫ

ﮑﯿﻧﻮﻧﺎﮐ لﺎ

ﻖﻘﺤﺗ  ﯽﻣﺮﯿﻏ

لﺎﻤﯿﻧ و

ﺶﻫﺎﮐ ﻪﺒﺗﺮﻣ

ﻖﻘﺤﺗ  تﺮﺒﻠﯿﮔ

ﻪﯾﺮﻈﻧﻖﻘﺤﺗ

رد ﻢﺘﺴﯿﺳ يﺎﻫ

هﺮﯿﻐﺘﻣﺪﻨﭼ

(23)

ﻖﻘﺤﺗيﺎﻫ

ﯽﻣﺮﯿﻏ لﺎﻤﯿﻧ

ﺎﯾ ﻢﯿﻘﺘﺴﻣ

[

1

]

( ) ( ) m ( )

G s = g s g s

ﺶﯾﺎﻤﻧ ﯽﻧﻮﺘﺳ

) ﺎﯾ ﻪﺑ رﻮﻃ ﻪﺑﺎﺸﻣ

( ﯽﻔﯾدر ﺲﯾﺮﺗﺎﻣ

ﺑﺎﺗ ﻊ ﻞﯾﺪﺒﺗ :

1 2

1 2

1 1

( )

j j

j

j j

j

ij ij ij

ij j j

s s

g s

s s

δ δ

δ

δ δ

δ

β β β

α α

+ + +

= + + +

1

1

j

j

ij ij ij

ij δ δ

β β β

β

= 

j

j j

αδ

α

(24)

24

ﻖﻘﺤﺗ لﺎﮑﯿﻧﻮﻧﺎﮐ

لﺮﺘﻨﮐ ﺮﯾﺬﭘ

:

1 2

1 2

1 1

( )

j j

j

j j

j

ij ij ij

ij j j

s s

g s

s s

δ δ

δ

δ δ

δ

β β β

α α

+ + +

= + + +

1 1

0 1 0 0

0 0 1 , 0

j j 1

j j

j j j

ij T ij

A b

c

δ δ

α α α

β

 

 

 

= =  

 

 

=  

(25)

ﺐﯿﮐﺮﺗ ﻖﻘﺤﺗ

يﺎﻫ لﺎﮑﯿﻧﻮﻧﺎﮐ

لﺮﺘﻨﮐ ﺮﯾﺬﭘ

ياﺮﺑ ﻢﺘﺴﯿﺳ

ﭼ هﺮﯿﻐﺘﻣﺪﻨ :

1 1

2 2

11 12 1

21 22 2

0 0 0 0

0 0 0 0

,

0 0 0 0

c c

m m

m m c

A b

A b

A B

A b

c c c

c c c

C

c c c

= =

=

(26)

26

لﺎﺜﻣ ﮏﯾ

(27)
(28)

28

يﺮﻄﻗ ﻖﻘﺤﺗ)

تﺮﺒﻠﯿﮔ (

ﺖﻟﺎﺣ يﺎﻀﻓ

لوا ﺖﻟﺎﺣ :

ﻘﺣ يراﺮﮑﺗ ﺮﯿﻏ يﺎﻫ ﺐﻄﻗ ﺎﺑ ﻞﯾﺪﺒﺗ ﻊﺑﺎﺗ ﺲﯾﺮﺗﺎﻣ ﯽﻘﯿ

ﻪﮐ ﺪﯿﻨﮐ ضﺮﻓ :

{

1, , n

}

,Bn , n ,

a C

di g

λ λ

D

Λ = 

زا ترﻮﺻ ﺚﯿﻤﺳا

ﮏﻣ نﻼﯿﻣ ﻪﺒﺳﺎﺤﻣ

ﯽﻣ دﻮﺷ

. lim ( )

D s G s

= →∞

(29)

ﻢﯾراد

{

1

}

1

( ) , ,

n

k

n n

k k

n

G s C diag s s B D G D

λ λ

s

=

λ

= − − + = +

هﺪﻧﺎﻣ يﺎﻫ

ﺲﯾﺮﺗﺎﻣ ﻊﺑﺎﺗ

ﻞﯾﺪﺒﺗ ﺪﻨﺘﺴﻫ

lim ( ) ( ) :

and

k

k k

s

T

k nk nk

G s G s

G c b

λ λ

=

= يدورو و ﯽﺟوﺮﺧ ﺲﯾﺮﺗﺎﻣ ﻒﯾدر و نﻮﺘﺳ ﻦﯿﻣاk

(30)

30

لﺎﺜﻣ ﮏﯾ

(31)

مود ﺖﻟﺎﺣ :

ﯽﻘﯿﻘﺣ يراﺮﮑﺗ يﺎﻫ ﺐﻄﻗ ﺎﺑ ﻞﯾﺪﺒﺗ ﻊﺑﺎﺗ ﺲﯾﺮﺗﺎﻣ

ﺒﺗ ﻊﺑﺎﺗ ﺲﯾﺮﺗﺎﻣ ﻪﮐ ﺪﯿﻨﮐ ضﺮﻓ ﻪﻟﺎﺴﻣ نﺪﺷ ﺮﺗ هدﺎﺳ ياﺮﺑ ﮏﯾ ﻞﯾﺪ

دﺪﻌﺗ ﺎﺑ رﺮﮑﻣ يﺎﻫ ﺐﻄﻗ 3

دراد .

ﺪﻫد ﯽﻣ ﯽﯾﺰﺟ يﺎﻫﺮﺴﮐ ﻂﺴﺑ :

( 1 )3 1 ( 1 )2 2 ( 1 ) 3

( )

G s M M M

s λ s λ s λ

= + +

1 1

1

2 2

( ) rank M r rank M r

M

=

=

و

{ }

{ }

{ }

1

1 1 2

1

1 ( 1)

, ,

, , , , ,

l lr

l lr l r lr

b b

b b b + b

(32)

32

ﻪﺘﮑﻧ :

1 2 3

r ≤ ≤ ≤r r m

ﺎﺑ ﻒﯾﺮﻌﺗ يﺎﻫرادﺮﺑ

ﯽﻧﻮﺘﺳ

،ﺐﺳﺎﻨﻣ ﯾراد

ﻢ:

1 1

1 1 1

1

1 1 1 1

1 11 1 12 2 1

1 2

11 12 1

1

1

( ) [ ( ) ]

l l r lr

l

l l l

r r r

lr

l l T l l T

r r r r

M c b c b c b b

c c c b C B

b

C M B B B

= + + +

 

 

 

 

=    

 

 

 

⇒ =

 

(33)

ﻪﺑ رﻮﻃ ﻪﺑﺎﺸﻣ

:

2

2

3

3

1 2

2 21 22 2

1 2

3 31 32 3

l l r

lr l l r

lr

b

M c c c b

b b

M c c c b

b

=    

=    

(34)

34

(35)

ﮏﯾلﺎﺜﻣ

[ ] [ ]

2 2

2

1 2

2 2

1 1 1

1

2 2

1 0

1 1 ( 1)

( ) 1 ( )

1 1 1

( 1)

0 ( 1)

1 1

1 1 1 1

( ) ( ) 0

1 1

( 1) ( 1) ( 1) ( 1)

1 0

( ) 2 , and 1 1 1 1

0 1

( ) 2 , and the number of Jorda

G s M s s

s

s

G s M M G s

s s s s

r M r M

r M r

M

+

= + =

+

= + + + = + + +

   

= = =   + 

   

= =

n blocks of order 2 is 2 and 1 is 0.

1 1 0 0 0 0

0 1 0 0 1 1

0 0 1 1 0 0

x x u

= +

(36)

36

ﮏﯾلﺎﺜﻣ

[ ]

2

2

1 2

2

2

1 1 1

1 1

1 0

( 1) ( 2)

( 1) ( 2)

( ) ( )

1 1

( 1) ( 2) 0

1 1 1

( ) ( 1) ( 1) ( 2)

1 0 0 0 0 1

1 1 1

( ) ( 1) 0 0 ( 1) 1 0 ( 2) 0 1

( ) 1 , and 1 1 0 one Jo 0

s s

s s

G s M s

s s s

G s M M M

s s s

G s s s s

r M r M

+ +

+ +

= = 

+ +

= + +

+ + +

= + + + + +

= = =   

 

[ ]

1

2 2 2 1

2

rdan block of order 2.

( ) 1 , and 0 1 0 zero Jordan block of order 1.

1

r M r M r r

M

 

= = =   − =

 

(37)

[ ]

( ) 1, and 1 0 1 1

1 1 0 0 0

0 1 0 1 0

0 0 2 0 1

1 0 1 0 1 1

r M M

x x u

y x

= =   

 

= +

= 

(38)

38

ﮏﯾلﺎﺜﻣ

3 2 3 2

4

3 2 2 3

1 2 3 4

4 3 2

4 3

2

1 1 2

( ) 1 1.5 1 1 1.5 2

9 1 1 2

1 1 1 1

( )

1 1 2 0 0 0

1 1

( ) 1 1 2 1.5 1 1.5

1 1 2 1 0 1

1 0 1 1 0 1

1 1

0 0 0 0 0 0

9 1 0 1 0 1

s s s s

G s s s s

s s s s s s s

G s M M M M

s s s s

G s s s

s s

+ − +

= + +

− + − + − −

= + + +

= − +

+ +

(39)

[ ]

1 1 1 1

1

2 2 2

2

2 1

1 1 2 1

1 1 2 ( ) 1 , and 1 1 1 2 one Jordan block of order 4.

1 1 2 1

0 0 0 0 0

1 1 2

1.5 1 1.5 ( ) 2 , and 1 0.5

1 0 1

1 0 1 0 1

and one J

M r M r M

M r M r M

M r r

 

 

= − ⇒ = = =  

 

 

= = = =  −

− =

1

3 2 3 3

3

3 2

1

ordan block of order 3.

1 0 1 0 0 1 1 1 2

0 0 0 ( ) 3 , and 0 0 0 1 0 1

9 1 0 1 5 3 1 0 1

and one Jordan block of order 2.

1 0 1

M M

M r r M

M r r

M M

 

 

= = = =  

 

 

− =

 = =

(40)

40

0 1 0 0 0 0 0

0 1 0 0 0 0 0

0 1 0 0 0

0 1 1 2

0 1 0 0 0 0

0 1 0 0 0

0 1 0 1

0 0 1 0 0 0

0 1 0 1

1 0 0 0 0 0 0 1 1

1 1 0 0 0.5 0 0 0 0

1 0 1 0 1 5 1 3 0

x x u

y x

= +

=

The Plant is

Controllable but

Unobservable

(41)

ﺶﻫﺎﮐﻪﺒﺗﺮﻣ

تﻻدﺎﻌﻣ يﺎﻀﻓ

ﺖﻟﺎﺣ

تﻻدﺎﻌﻣ • يﺎﻀﻓ

ﺖﻟﺎﺣ ﺮﯿﻏ

ﯽﻣ لﺎﻤﯿﻧ

تﻻدﺎﻌﻣ • يﺎﻀﻓ

ﺖﻟﺎﺣ ﯽﻣ

لﺎﻤﯿﻧ

(42)

42

ﺶﻫﺎﮐﻪﺒﺗﺮﻣ

ﻢﺘﺴﯿﺳ يﺎﻫ

ﯽﻣﺮﯿﻏ لﺎﻤﯿﻧ

ﻖﻘﺤﺗ لﺎﮑﯿﻧﻮﻧﺎﮐ

لﺮﺘﻨﮐ ﺮﯾﺬﭘ

:

1 1 1

2 2 2

1 2

0 0

0 P( )

0 0

( )

m m m

m

sI A B

sI A B

s

sI A B

C C C D s

δ

δ

δ

=

ﯽﻣ ناﻮﺗ

ﺎﺑ ياﺮﺟا تﺎﯿﻠﻤﻋ

ﺐﺳﺎﻨﻣ يﺎﻫﺮﻔﺻ

ﻪﻠﭘﻮﮐد ﯽﺟوﺮﺧ

ار :دﺮﮐ فﺬﺣ و ﯽﯾﺎﺳﺎﻨﺷ

(43)

12

P( ) 0

0 ( )

u u u

o o o

o

sI A A B

s sI A B

C D s

=

Pmin ( )

( )

o o o

o

sI A B

s C D s

= 

(44)

44

ﻪﺘﮑﻧ ود :

ﻧ لﺮﺘﻨﮐ يﺎﻫ ﻢﺘﺴﯿﺳ ياﺮﺑ ﻪﺑﺎﺸﻣ ﺪﻧور  ﺮﯾﺬﭘﺎ

يور ﺮﺑ ﻢﺘﯾرﻮﮕﻟا لﺎﻤﻋا  :

0 A B N C

 

=  

 

(45)

لﺎﺜﻣ ﮏﯾ

(46)

46

(47)

ﺶﻫﺎﮐﻪﺒﺗﺮﻣ

تﻻدﺎﻌﻣ يﺎﻀﻓ

ﺖﻟﺎﺣ ﯽﻣ

لﺎﻤﯿﻧ

1 11 1 12 2 1

x A x A x B u x A x A x B u

= + +

= + +

(48)

48

ود  شور لواﺪﺘﻣ

:

شور شﺮﺑ

شور هﺪﻧﺎﻣ

يراﺬﮔ

شورشﺮﺑ

(49)

ﺖﻟﺎﺣ يﺮﻄﻗ

:

(50)

50

(51)

لﺎﺜﻣ  :

ﻦﯿﺑرﻮﺗ يزﺎﮔ

2 2ₓ ﺎﺑ 12 ﺮﯿﻐﺘﻣ ﺖﻟﺎﺣ

ﺦﺳﺎﭘ  يﺎﻫ

ﯽﺟوﺮﺧ :

0 5 10 15 20 25 30

0 0.5 1 1.5 2 2.5 3

y 1

time (sec)

0 5 10 15 20 25 30

-4 -2 0 2 4

y 1

time (sec)

2 3 4

10 15

(52)

52

ﺮﯾدﺎﻘﻣ  ﯽﯾﺎﻨﺜﺘﺳا

:

10-3 10-2 10-1 100 101 102

-50 -40 -30 -20 -10 0 10 20 30

Frequency (rad\sec)

Singular Values (dB)

(53)

شورهﺪﻧﺎﻣ

يراﺬﮔ

ﮏﯾ ﻪﺘﺳد

ﺮﯿﻐﺘﻣ زا

ﻪﺘﺳد يﺎﻫﺮﯿﻐﺘﻣ

ﺖﻟﺎﺣ ﺮﮕﯾد

ﯾﺮﺳ ﻊ ﺪﻧﺮﺗ .

(54)

54

لﺎﺜﻣ  :

ﻦﯿﺑرﻮﺗ يزﺎﮔ

2 2ₓ ﺎﺑ 12 ﺮﯿﻐﺘﻣ

ﺖﻟﺎﺣ و

ﺶﻫﺎﮐ :ﯽﺟوﺮﺧ يﺎﻫ ﺦﺳﺎﭘ .يراﺬﮔ هﺪﻧﺎﻣ شور ﻪﺑ ﻪﺒﺗﺮﻣ

0 5 10 15 20 25 30

0 0.5 1 1.5 2 2.5 3

y 1

time (sec)

0 5 10 15 20 25 30

0 1 2 3 4

y1

time (sec)

0 5 10 15 20 25 30

0 1 2 3 4

y 2

time (sec)

0 5 10 15 20 25 30

0 5 10 15

y 2

time (sec)

(55)

ﺮﯾدﺎﻘﻣ  ﯽﯾﺎﻨﺜﺘﺳا

:

10-3 10-2 10-1 100 101 102

-50 -40 -30 -20 -10 0 10 20 30

Frequency (rad\sec)

Singular Values (dB)

(56)

56

بﺎﺨﺘﻧا  ﻪﺒﺗﺮﻣ

لﺪﻣ ﯽﮑﯿﻣﺎﻨﯾد

ﻖﻘﺤﺗ يﺎﻫ

ﺲﻧﻻﺎﺑ هﺪﺷ

نﺎﯿﻣاﺮﮔ  يﺎﻫ

لﺮﺘﻨﮐ يﺮﯾﺬﭘ

و ﺖﯾور يﺮﯾﺬﭘ

:

(57)

شﺮﺑ  ﺲﻧﻻﺎﺑ

هﺪﺷ

هﺪﻧﺎﻣ  يراﺬﮔ

ﺲﻧﻻﺎﺑ هﺪﺷ

(58)

58

لﺎﺜﻣ  :

ﻦﯿﺑرﻮﺗ يزﺎﮔ

2 2ₓ ﺎﺑ 12 ﺮﯿﻐﺘﻣ ﺖﻟﺎﺣ

و ﺶﻫﺎﮐ ﻪﺒﺗﺮﻣ

ﻪﺑ

شور :ﯽﺟوﺮﺧ يﺎﻫ ﺦﺳﺎﭘ .هﺪﺷ ﺲﻧﻻﺎﺑ يراﺬﮔ هﺪﻧﺎﻣ و شﺮﺑ

0 5 10 15 20 25 30

-1 0 1 2 3

y 1

time (sec)

0 5 10 15 20 25 30

-1 0 1 2 3 4

y 1

time (sec)

0 5 10 15 20 25 30

-1 0 1 2 3 4

y 2

time (sec)

0 5 10 15 20 25 30

-5 0 5 10 15

y 2

time (sec)

(59)

ﺮﯾدﺎﻘﻣ  ﯽﯾﺎﻨﺜﺘﺳا

:

-3 -2 -1 0 1 2

-50 -40 -30 -20 -10 0 10 20 30

Singular Values (dB)

Referensi

Dokumen terkait

ﻪﺑ ﻪﮐ يرﻮﻃ يد تﺎﯿﺻﻮﺼﺧ ﺎﺑ داﻮﻣ ﻦﺘﻓﺮﮔ راﺮﻗ ضﺮﻌﻣ رد مﺎﮕﻨﻫ ﯽﮑﯾﺮﺘﮑﻟا جاﻮﻣا ﺎﺑ توﺎﻔﺘﻣ داﻮﻣ ﺎﺑ ﯽﺑﺎﺨﺘﻧا رﻮﻃ ﻪﺑ جاﻮﻣا ﻦﯾا ،ﻮﯾووﺮﮑﯾﺎﻣ هﺪﯾﺪﭘ ﻞﯿﻟد ﻪﺑ و هﺪﺷ ﺮﯿﮔرد ﺮﺗﻻﺎﺑ ﺖﻓا ﺐﯾﺮﺿ ياراد يﺎﻫ ﯽﻣ

رد ،ﻪﻟﺎﻘﻣ ﻦﻳا ﻲﻧاوﺮﻴﺷ يراﺪﻳﺎﭘ بﺮﻐﻟﺎﻤﺷ ﻲﻛﺎﺧ يﺎﻫ دازآ هﺎﮕﺸﻧاد ﺖﻳﺎﺳ رد ﻊﻗاو ناﺮﻬﺗ ﺪﺣاو ﻲﻣﻼﺳا هار تروﺎﺠﻣ رد ﻪﻛ تﺎﻘﻴﻘﺤﺗ و مﻮﻠﻋ هزﺎﺳ و ﻲﺳﺮﺘﺳد يﺎﻫ راﺮﻗ ﻒﻠﺘﺨﻣ يﺎﻫ ﺎﺑ ،ﺪﻧراد مﺮﻧ زا

ﯽﻣ هﮋﯾو دﺮﮐرﺎﮐو سﺪﻘﺗ ودﻮﺷ ﯽﻣ اﺪﺟ ﻪﺼﻗ ﯽﻌﯿﺒﻃ ﺮﯿﺴﻣزا ﯽﯾودﺎﺟ يﺎﻫ ﻞﯾﺪﺒﺗو ﺎﻫ ﯽﺴﯾدﺮﮔدزا يرﺎﺼﺣ ﺎﺑ ﻪﮐ يا ﻪﺧﺮﭼ ﺪﺑﺎﯾ .» ﺎﮔ ﺮﮔا ﯽﺘﺣو ﺖﺳﺎﻫ لﻮﻠﻌﻣ و ﺎﻫ ﺖﻠﻋ زا يا ﻪﻠﺴﻠﺳ ﻊﺑﺎﺗ نﺎﺘﺳاد ﯽﻄﺧ حﺮﻃ ة ﯽﮑﯾ زا

ﯽﻣ ﯽﻌﺳ ﺶﻫوﮋﭘ ﻦﯾا رد ﻦﺘﻣ ﯽﺘﺧﺎﻨﺷ ﯽﻨﻌﻣ ﯽﺳرﺮﺑ ﻦﻤﺿ دﻮﺷ ﻮﺒﻠﯿﺑ رد دﻮﺟﻮﻣ يﺎﻫ ﻮﻋ زا ﺮﮕﯾد ﯽﮑﯾ ﻪﺑ ﺎﻫدر رد ﯽﺳﺎﺳا ﻞﻣا هرﺎﺑرد ﻪﮐ تﺎﻐﯿﻠﺒﺗ نآ طﺎﺒﺗرا و ﯽﻄﯿﺤﻣ تﺎﻐﯿﻠﺒﺗ و ﯽﻄﯿﺤﻣ ﮏﯿﻓاﺮﮔ ﻦﯾا ﺮﺑ ﺪﯿﮐﺄﺗ ﺎﺑ

ﻪـﻛ ﺪـﺷ نﺎﻴﺑ ﻲﻘﻴﻘﺤﺗ ﺞﻳﺎﺘﻧ رد ــﺘﻜﻫ رد ﺮــﺗ ﺔــﻓﻮﻠﻋ دﺮــﻜﻠﻤﻋ ﻦﻳﺮﺘﺸــﻴﺑ ﻢﻳاﺮــﭘ ﺎــﺑ رﺎ ﺎــﺑ نﺪــﺷ لﻮﻠﺤﻣ ﻲﻠﭘ يﺎﻫ ﻦﻠﻴﺗا ﺖـﻈﻠﻏ ﺎﺑ لﻮﻜﻳﻼﮔ يﺎـﻫ 5 و 10 ﺪـﺻرد ﺪﺷ ﻞﺻﺎﺣ ] 17 .[ ﻪـﻧاد

1 - 3 - لﺪﻣ يزﺎﺳ ،ﯽﮑﯾﺰﯿﻓ يﺎﻫﺮﺘﻣارﺎﭘ تاﺮﯿﯿﻐﺗ رد يراﺪﻬﮕﻧ نارود ﯽﻃ ﯽﮕﻧر و ﯽﯾﺎﯿﻤﯿﺷ ﻪﻧﺎﺧدﺮﺳ لﺪﻣ ﺎﺑ ﯽﮑﯿﺘﻨﯿﺳ يﺎﻫ رد لوﺪﺟ 1 تﺎﻋﻼﻃا زا ﻞﺻﺎﺣ لﺪﻣ شزاﺮﺑ يﺎﻫ ﯽﮑﯿﺘﻨﯿﺳ ﻪﺟرد ءﺰﺟ ﻞﯾﺪﺒﺗ ،مود

ﺞﯾﺎﺘﻧ يور ﺮﺑ ﻪﮐ ﻪﻌﻟﺎﻄﻣ ﻦﯾا ﺞﯾﺎﺘﻧ سﺎﺳا ﺮﺑ 272 نﺎﺘﺴﭘ نﺎﻃﺮﺳ ﻪﺑ ﻼﺘﺒﻣ نز ﯽﻤﯿﺷ ﺖﺤﺗ ﻢﻈﻧ رد يراﻮﺷد سﺎﯿﻘﻣ تاﺮﻤﻧ ﻦﯿﺑ ،ﺪﺷ مﺎﺠﻧا ﯽﻧﺎﻣرد ﯽﺸﺨﺑ هدﺮﺧ و ﯽﻧﺎﺠﯿﻫ سﺎﯿﻘﻣ عﻮﻬﺗ ﺖﻟﺎﺣ ناﺰﯿﻣ ﺎﺑ نآ يﺎﻫ

ﺞﯾﺎﺘﻧ ﻦﯾا ﯽﻣ نﺎﺸﻧ ﺶﻫوﮋﭘ ﯽﮕﺘﻔﺷآ ﺪﻫد ناور يﺎﻫ ﯽﺘﺧﺎﻨﺷ ﯽﮔﮋﯾو و - ﯽﻨﻌﻣ طﺎﺒﺗرا ﯽﺘﯿﺼﺨﺷ يﺎﻫ ﻪﺘﺷاد شرﺎﺧ كاردا ﺎﺑ يراد ﺪﻧا و عﻮﻤﺠﻣ رد 5 / 70 ﺶﯿﭘ ار شرﺎﺧ كاردا ﺲﻧﺎﯾراو زا ﺪﺻرد ﯽﻨﯿﺑ و هدﺮﮐ