• Tidak ada hasil yang ditemukan

Index of /intel-research/silicon

N/A
N/A
Protected

Academic year: 2017

Membagikan "Index of /intel-research/silicon"

Copied!
33
0
0

Teks penuh

(1)

Nano-materials &

Silicon Nanotechnology

C. Michael Garner

Intel Corporation

C. Michael Garner

(2)

Agenda

Agenda

Technology Scaling and Moore's Law

Technology Scaling and Moore's Law

Technology Challenges

Technology Challenges

Nanotechnology Building Blocks

Nanotechnology Building Blocks

Nano

Nano

-

-

material Opportunities

material Opportunities

Beyond the roadmap

Beyond the roadmap

.

.

(3)

Key Messages

Key Messages

Silicon Nanotechnology is production reality

Silicon Nanotechnology is production reality

and follows Moore’s law

and follows Moore’s law

Experimental data on 22nm

Experimental data on 22nm

-

-

node/10nm

node/10nm

-

-minimum

minimum

-

-

feature

feature

-

-

size

size

We believe that silicon nanotechnology is

We believe that silicon nanotechnology is

extendable to 2015

extendable to 2015

Open minded about post

Open minded about post

-

-

2015 options

2015 options

Nano-

Nano

-

materials will play an important role in

materials will play an important role in

the silicon nanotechnology platform

the silicon nanotechnology platform

(4)

Technology Scaling

Technology Scaling

100 100 10 10 0.01 0.01

1970 1980 1990 2000 2010 2020

Nominal feature size

Nominal feature size

(5)

Intel’s Transistor Research in

Intel’s Transistor Research in

Deep Nanotechnology Space

Deep Nanotechnology Space

Experimental transistors for future process generations

Experimental transistors for future process generations

30nm 30nm

20nm 20nm

15nm 15nm

10nm 10nm 65nm process

65nm process 2005 production

2005 production 45nm process45nm process 2007 production

2007 production 32nm process32nm process 2009 production

2009 production 22nm process22nm process 2011 production 2011 production

Transistors will be improved

for production

Transistors will be improved

Transistors will be improved

for production

(6)

Moore's Law Continues

Moore's Law Continues

1,000 10,000 100,000 1,000,000 10,000,000 100,000,000 1,000,000,000

1970 1980 1990 2000 2010

4004 8080

8086

8008

Pentium® Processor

486™ DX Processor 386™ Processor

286

Pentium® II Processor Pentium® III Processor

Itanium® Processor

Heading toward 1 billion transistors in 2007

(7)

Flash

Flash

(ETOX

(ETOX

®

®

)

)

Technology Scaling

Technology Scaling

1986 / 1.5µm 1988 / 1.0µm 1991 / 0.8µm 1993 / 0.6µm

1996 / 0.4µm 1998 / 0.25µm 2000 / 0.18µm 2002 / 0.13µm

5.4X

1986 / 1.5µm 1988 / 1.0µm 1991 / 0.8µm 1993 / 0.6µm

1996 / 0.4µm 1998 / 0.25µm 2000 / 0.18µm 2002 / 0.13µm 1986 / 1.5µm

1986 / 1.5µm 1988 / 1.01988 / 1.0µµmm 1991 / 0.81991 / 0.8µµmm 1993 / 0.61993 / 0.6µµmm

1996 / 0.4µm

1996 / 0.4µm 1998 / 0.251998 / 0.25µµmm 2000 / 0.182000 / 0.18µµmm 2002 / 0.13µm

5.4X

234 X

Volume Production Year / Technology Generation

18 years and 8 Generations of ETOX® to 0.13

µ

m

18 years and 8 Generations of ETOX

(8)

Silicon Scaling Leads to Material

Silicon Scaling Leads to Material

Challenges

Challenges

Lithography

Lithography

Transistors

Transistors

Interconnects

Interconnects

(9)

PPT Shrink Source: Intel

Material Challenges

Material Challenges

50nm

Print Features

Print Features Line Edge Roughness(LER)Line Edge Roughness(LER)

10nm 10nm

Resist Nano-domains

Resist Nano-domains

Low K Interlevel Dielectric Micelle Assembled….

Low K Interlevel Dielectric Micelle Assembled….

Barrier Layer ~20nm

Barrier Layer ~20nm

What Device Next? What Materials? How to Assemble? What Device Next? What Device Next? What Materials? What Materials? How to Assemble? How to Assemble?

Materials Challenges Everywhere

(10)

Nanotech

Nanotech

Building Blocks

Building Blocks

Sub 100nm particles

Sub 100nm particles

c.

Molecular Assembly (directed and self assembly)

c.

Molecular Assembly (directed and self assembly)

Macromolecules

Macromolecules

10nm 10nm

Sub 100nm structures

(11)

Lithography Challenges

Lithography Challenges

1000 1000

100 100

10 10

’89

’89 ’91’91 ’93’93 ’95’95 ’97’97 ’99’99 ’01’01 ’03’03 ’05’05 ’07’07 ’09’09 ’11’11 Initial Production

Initial Production

Feature size

Feature size

13nm (EUVL)

13nm (EUVL)

Lithography

Lithography

Wavelength

Wavelength

193nm 193nm 248nm

248nm

Gap

Gap

nm

New Mask, Design Techniques, and Materials Needed to Support future Lithography Scaling

(12)

Future Lithography Resist Challenges

Future Lithography Resist Challenges

Line Edge Roughness(LER)

Atomic Force Microscope

Picture of Resist Nano-domains Atomic Force Microscope

Picture of Resist Nano-domains Line Edge Roughness(LER)

Resist nano-domains limiting feature resolution and defects.

•Requires control at the molecular level

Resist nano-domains limiting feature resolution and defects.

(13)

New Materials, Devices Extend Si

New Materials, Devices Extend Si

Scaling

Scaling

Gate

Gate

Silicide Silicide added added

Channel

Channel

Strained Strained silicon silicon

Changes

Changes

Made

Made

Future

Future

Options

Options

High

High

-

-

k

k

gate

gate

dielectric

dielectric

Transistor

Transistor

Source: Source: Intel Intel PolySi Silicon PolySi Silicon Gate dielectric less than 3 atomic layers thick

Source: Intel

(14)

New Materials, Devices Extend Si

New Materials, Devices Extend Si

Scaling

Scaling

Metal lines

Metal lines

Al Cu Al Cu

Insulating

Insulating

dielectric

dielectric

SiO

SiO22 SiOFSiOF CDO

CDO (low (low--k)k)

Changes

Changes

Made

Made

Future

Future

Options

Options

Ultra

Ultra

Low

(15)

Molecular Self

Molecular Self

-

-

Assembly

Assembly

Low

Low

-

-

K Dielectric

K Dielectric

Source: J. Brinker, UNM/Sandia National Labs

Source: J. Brinker, UNM/Sandia National Labs

Materials of the gel self-organize into a Low K dielectric

(16)

Conductivity Challenge

Conductivity Challenge

(17)

Integrated Thermal and Power

Integrated Thermal and Power

Delivery Management

Delivery Management

Heat spreader for high heat flux from die

Capacitors for high current, low noise power delivery

Thermal Challenge

Ultra low thermal resistance Thermal Interface Material

Thermal Challenge

Ultra low thermal resistance Thermal Interface Material

Power Challenge Ultra fast,

high charge density capacitors

Power Challenge Ultra fast,

high charge density capacitors

Nano-material Opportunities in Thermal and Power Delivery

(18)

Characterization Techniques

Characterization Techniques

Characterization Techniques

Quantitative Understanding

Physics-based Computer Vision

Scientific

measurements Model Knowledge

Interpret images in conjunction with physical modelsInterpret images in conjunction with physical models

Î

ÎFocus on nanoscale sources such as AFMs, STMs, FIBFocus on nanoscale sources such as AFMs, STMs, FIB

New metrology is needed……New metrology is needed……

Î

ÎFaster structural analysisFaster structural analysis

Î

(19)

Beyond the roadmap….

Beyond the roadmap….

Many device options….

Many device options….

Compatibility with CMOS for evolutionary

Compatibility with CMOS for evolutionary

introduction

introduction

Directed or self assembly of arrays???

Directed or self assembly of arrays???

Î

Î

Defect density or purity required….

Defect density or purity required….

Self correcting architectures??

Self correcting architectures??

Nanotechnology needs a richer suite of

functionality…

Collaboration between Industry, Universities,

and Government is essential

Collaboration between Industry, Universities,

Collaboration between Industry, Universities,

and Government is essential

(20)

What are we looking for?

What are we looking for?

Required characteristics:Required characteristics:

Î

ÎScalabilityScalability

Î

ÎPerformancePerformance

Î

ÎEnergy efficiencyEnergy efficiency

Î

ÎGainGain

Î

ÎOperational reliability Operational reliability

Î

ÎRoom temp. operationRoom temp. operation

Preferred approach:Preferred approach:

Î

ÎCMOS process CMOS process compatibility

compatibility

Î

ÎCMOS architectural CMOS architectural compatibility

Alternative state variables

Alternative state variables

Spin

Spin

electron, nuclear,

electron, nuclear,

photon

photon

Phase

Phase

Quantum state

Quantum state

Magnetic flux quanta

Magnetic flux quanta

Mechanical deformation

Mechanical deformation

Dipole orientation

Dipole orientation

Molecular state

Molecular state

(21)

Some Alternative Logic Devices

Some Alternative Logic Devices

Fas

ter

Sm

al

le

r

Cheaper

ITRS, 2000

George Bourianoff

(22)

Future Nanotechnology will compliment

Future Nanotechnology will compliment

& extend Silicon Technology

& extend Silicon Technology

*Source: Holmes et al, University *Source: Holmes et al, University College Cork

College Cork

**Source: Blau et al, Trinity **Source: Blau et al, Trinity College Dublin

College Dublin

Silicon

Silicon

Nanowire*

Nanowire*

Nanotube/Nanowire

Nanotube/Nanowire

Transistors

Transistors

Carbon

Carbon

Nanotube**

Nanotube**

Many options, but no clear winners…

Many options, but no clear winners…

(23)

Summary

Summary

Many new materials required for scaling

Many new materials required for scaling

Î

ÎLithographyLithography

Î

ÎTransistorTransistor

Î

ÎInterconnectsInterconnects

Î

ÎNonNon--volatile Memoryvolatile Memory

Î

ÎThermal & Power Delivery Materials Thermal & Power Delivery Materials

Silicon is the platform for the future

Silicon is the platform for the future

Nanotechnology could deliver critical materials to

Nanotechnology could deliver critical materials to

support Silicon Nanotechnology

support Silicon Nanotechnology

For technology beyond 2015 collaboration between

For technology beyond 2015 collaboration between

Industry, Universities, and Government is essential

(24)

Back

(25)

Quest for New Materials

Quest for New Materials

Metal Al Æ Cu Æ Æ Æ Æ ?

ILD SiO2 SiOF Æ SiOC Æ Æ ? ?

Gate Ox SiO2 Æ Æ Æ High-k ? ? ?

Gate

Electrode Poly Æ Æ Æ Æ Metal ? ?

Year 1997 1999 2001 2003 2005 2007 2009 2011 P856 P858 PX60 P1262 P1264 P1266 P1268 P1270 Node 0.25µm 0.18 µm 130nm 90nm 65nm 45nm 32nm 22nm

(26)

Transistors Shipped Per Year

Transistors Shipped Per Year

Moore’s Law in Action...

'68 '70 '72 '74 '76 '78 '80 '82 '84 '86 '88 '90 '92 '94 '96 '98 '00 '02

1016 1014 1012 1010 Units 1018 S o u rce : Da ta ques t/I n te l, 12/02

Average Transistor Price By Year

Average Transistor Price By Year

0.0000001 0.000001 0.00001 0.0001 0.001 0.01 0.1 1 10

'68 '70 '72 '74 '76 '78 '80 '82 '84 '86 '88 '90 '92 '94 '96 '98 '00 '02

$ $

Moore’s Law is driven by economics

Moore’s Law is driven by economics

(27)

Precision Biology

Precision Biology

Precision Biology

Create a new generation of

Create a new generation of

bio

bio--instruments capable of instruments capable of operating in the

operating in the singlesingle- -molecule

molecule regimeregime Silicon Fluid

reservoirs and channel

20µm

280 nm

100nm

100nm

50nm

50nm

Transistor for

Transistor for

90nm Process

90nm Process

Source: Intel

Source: Intel

Influenza virus

Influenza virus

Source: CDC

(28)

The road to smart dust.…

The road to smart dust.…

The road to smart dust.…

Configurable Configurable Silicon Radio Silicon Radio

MOTE MOTE

(a small piece of silicon)

(a small piece of silicon)

Sensing +

Sensing +

Computing Computing + +

Communicating

Communicating

(29)

Nanotechnology Opportunities

Nanotechnology Opportunities

Extending Moore’s Law

Extending Moore’s Law

Synergistic extension of Silicon Technology

Synergistic extension of Silicon Technology

Î

ÎSiSi--based CMOS transistors through 2015based CMOS transistors through 2015

Î

ÎRole for new materials based on nanotechnologyRole for new materials based on nanotechnology

Î

ÎOpen minded about options beyond 2015Open minded about options beyond 2015

Expanding Moore’s Law

Expanding Moore’s Law

Proactive Computing Vision

Proactive Computing Vision

Collaboration between Industries, Universities, and

Collaboration between Industries, Universities, and

Governments is essential

(30)

What is Nanotechnology?

What is Nanotechnology?

a.

a.

New structures like carbon nanotubes

New structures like carbon nanotubes

b.

b.

Silicon devices made smaller

Silicon devices made smaller

c.

c.

Arranging atoms and molecules

Arranging atoms and molecules

d.

d.

Letting atoms assemble themselves

Letting atoms assemble themselves

e.

e.

Something far in the future

Something far in the future

f.

f.

In production today

In production today

g.

g.

All of the above

All of the above

Correct answer: g.

(31)

$ per transistor decreased by > 6 orders in 30

$ per transistor decreased by > 6 orders in 30

years: This drives investments

years: This drives investments

0.0000001 0.000001 0.00001 0.0001 0.001 0.01 0.1 1 10

'68 '70 '72 '74 '76 '78 '80 '82 '84 '86 '88 '90 '92 '94 '96 '98 '00 '02 $

$

CPU ~3

micro

-$/xtor

DRAM ~30

nano

-$/xtor

(32)

What are the Alternative Devices?

What are the Alternative Devices?

(From ITRS ERD TWIG 2003)

Logic Device Perf. Arch. compat Reliab ility Proc. compa t Op. temp Energ eff Sensitiv ity Scala bility Flux quanta

3 2 3 2 1 1 2 1

1D 2 3 1 2 3 3 3 3

Resonant Tunneling Devices 29

2 2 2 2 2 3 1 2

SETs 1 1 1 2 1 2 1 2

Molecular 1 1 3 2 2 2 3 3

QCA 1 1 2 1 1 2 3 2

Spin 2 2 1 2 1 2 1 3

Quantum 3 2 1 1 1 3 1 3

(33)

Architecture Devices State variables Data represent ations CNT FETs Molecular Spintronics Quantum CNN Crossbar Quantum Boolean Molecular state Spin orientation

Flux quanta Quantum state Electric charge Associative Patterns Analog Digital Scaled CMOS Probabilities Hierarchy Biotech Logic/Memory Sensors NEMS

A Taxonomy for Nano

A Taxonomy for Nano

-

-

computing

computing

Referensi

Dokumen terkait

Berdasarkan Hasil Evaluasi Dokumen Penawaran dan Dokumen Kualifikasi tanggal 14 s.d 23 September 2017, untuk Paket Pekerjaan Sosialisasi Bantuan Permodalan Ekonomi Desa,

Berdasarkan Hasil Evaluasi Dokumen Penawaran dan Dokumen Kualifikasi tanggal 14 s.d 23 September 2017, untuk Paket Pekerjaan Rapat Sosialisasi dan Diseminasi Dalam Rangka

 Tutor mengembangkan Peta Konsep berdasarkan hasil kajian materi BMP dan.. Reanalisis Kompetensi

Randugunting pada Dinas Pekerjaan Umum Kota Tegal akan melaksanakan Pemilihan Langsung dengan pascakualifikasi untuk paket pekerjaan konstruksi secara elektronik

 Deskripsi Mata kuliah : Matakuliah ini membahas konsep dan teori adminstrasi pemerintahan daerah yang meliputi, 1) konsep dasar pemerintahan daerah, 2) pemerintahan daerah

[r]

Tutor dan petugas menyiapkan ruang tutorial TTM: LCD, ruang kelas, dan spidol Sarana dan prasana pembelajaran 15’’ 2 Kegiatan Pendahuluan.. Tanya jawab tentang BMP yang

[r]