2003 IRPS
High Performance Logic
Technology and Reliability Challenges
Mark Bohr
Intel Senior Fellow
Outline
y
Logic Technology Evolution
y
90 nm Logic Technology
CPU Transistor Count Trend
1 billion transistor CPU by 2007
1,000 10,000 100,000 1,000,000 10,000,000 100,000,000 1,000,000,000
1970 1980 1990 2000 2010
4004 8008 8080
8086 286 386TM CPU
486TM CPU Pentium® CPU
Pentium® II CPU Pentium® III CPU
Pentium® 4 CPU
CPU MHz Trend
10 GHz CPU by 2007
1 10 100 1,000 10,000
1970 1980 1990 2000 2010
MHz
8086
286 386TM CPU
486TM CPU
Pentium® CPU Pentium® II CPU
8080
Feature Size Trend
Feature Size
New technology generation introduced every 2 years
0.01 0.1 1 10
1970 1980 1990 2000 2010 2020
Feature Size Trend
Gate Length
Feature Size
Transistor gate length scaling faster for improved performance
0.01 0.1 1 10
1970 1980 1990 2000 2010 2020
CPU Power Trend
386
486
Pentium® CPU Pentium Pro®
CPU Pentium® II/II
CPU
Pentium® 4 CPU
1 10 100
1.5 1.0 0.8 0.5 0.35 0.25 0.18 0.13 0.09
Generation (um) Power
(W)
Logic Technology Evolution
Each new technology generation provides:
~
0.7x minimum feature size scaling~ 2.0x increase in transistor density
~ 1.5x faster transistor switching speed
Reduced chip power
Outline
y
Logic Technology Evolution
y
90 nm Logic Technology
Key 90 nm Process Features
High Speed, Low Power Transistors
– 1.2 nm gate oxide
– 50 nm gate length
– Strained silicon technology
Faster, Denser Interconnects
– 7 copper layers
– New low-k dielectric
Lower Chip Cost
– 1.0 µm2 SRAM memory cell size
90 nm Generation Transistor
50nm
W Contact
NiSi Layer
Silicon Gate Electrode
1.2 nm SiO2 Gate Oxide
90 nm Generation Gate Oxide
Polysilicon Gate Electrode
Silicon Substrate
1.2 nm SiO2
1.2 nm Gate Oxide Reliability
1.E+09
10 Years
T=110C
VMAX=1.2V
1.E+08
1.E+07
1.E+06 TDDB
(sec)
1.E+05
1.E+04
1.E+03
1.E+02
5 6 7 8 9 10 11 12
(MV/cm) EOX
Strained Silicon Transistors
Current Flow
Normal electron
flow
Faster electron
flow
Normal Silicon Lattice Strained Silicon Lattice
Transistor Performance Trend
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.41990 1995 2000 2005
Drive Current (mA/um) 1 10 Supply Voltage (V) NMOS PMOS 90 nm
90 nm Generation Interconnects
7 layers of copper interconnect
– 1 more layer than 0.13 µm generation
– Extra layer provides cost effective improvement in logic density
New low-k dielectric introduced to reduce wire-wire
capacitance
– Carbon-doped oxide (CDO) dielectric reduces capacitance by 18% compared to SiOF dielectric used on 0.13 µm
90 nm Generation Interconnects
pitch
M7 1080 nm
M6 720 nm
M5 480 nm
M4 400 nm
M3 320 nm
M2 320 nm
M1 220 nm
Low-k CDO Dielectric
Copper Interconnects
Cu + CDO Interconnects
Cu
Thin SiN layer
CDO K = 2.9
No trench
Void-Free Required for Electromigration
M1 M1 V1
V1
M1 M1 V1
Electromigration Enabling
Old process New process
Cu
CDO
Cu
CDO
Cu
CDO
Electromigration Improvement
Process 4 Process 3 1000 1000 100 100 10 10 1 1 9999
9
955
9
900
8
800
7
700
6
600
5
500
4
400
3
300
2
200
1
100
5 5
1 1
Percent
First EM Process 1 Process 2
Ti
6-T SRAM Cell
y SRAM cell has area of 1.0 µm2
y Same process as high performance logic
y Small memory cell enables cost effective increase in CPU
performance by adding more on-die cache memory
Intel SRAM Cell Size Trend
90 nm
0.1 1 10 100
1990 1995 2000 2005
Cell Area
(um2)
per year
.71x
52 Mbit SRAM on 90 nm Process
10.1 mm
10.8 mm
330 million transistors on single chip
Initial 90 nm process certification vehicle
Same Process for Logic and SRAM
Logic
SRAM
• Microprocessors use same transistors and interconnects for Logic and SRAM
• On-die SRAM cache transistor count increasing for improved performance
52 Mbit SRAM Chips on 300 mm Wafer
Outline
y
Logic Technology Evolution
y
90 nm Logic Technology
Planar CMOS Transistor Scaling
Future
25 nm
15nm
Today
50 nm 30 nm 20 nm 15 nm Gate Length
R&D groups exploring aggressive scaling of conventional planar CMOS transistors
Transistor I
OFF
Leakage Trend
Production data Research data
in literature
Intel 15 nm transistor
(2001) Intel 30 nm transistor (2000) ( ) ( ) 1.E-04 1.E-06 1.E-08
I
OFF (A/um) 1.E-10 1.E-12 1.E-14 10Transistor Physical LG (nm)
100 1000
• Transistor leakage current increasing as VT scales
Fully Depleted Transistors
1E-09 1E-08 1E-07 1E-06 1E-05 1E-04 1E-030 0.25 0.5 0.75 1 1.25
VG (Volts)
ID (A/ µ m ) DST Bulk Silicon VD= 1.3V
VD= 0.05V
Matched IOFF
FD SOI 1E-09 1E-08 1E-07 1E-06 1E-05 1E-04 1E-03
0 0.25 0.5 0.75 1 1.25
VG (Volts)
ID (A/ µ m ) DST Bulk Silicon VD= 1.3V
VD= 0.05V
Matched IOFF
FD SOI
Source: Intel Components Research
LG
TSi
SiO2
Fully-Depleted SOI (planar)
• FD SOI provides steeper sub-threshold slope, which can be used to reduce IOFF or increase IDSAT
Fully Depleted Transistors
W
SiL
gT
SiW
SiL
gT
SiDouble-Gate (non-planar) Tri-Gate (non-planar)
Transistor I
GATE
Leakage Trend
0.001 0.01 0.1 1 10 100 1000
90 130 180 250 350 500
Technology Generation (nm)
I
GATE(A/cm2)
1 10
Tox (nm)
High-k Gate Dielectric
1E-8 1E-7 1E-6 1E-5 1E-4 1E-3 1E-2 1E-1 1E+0 1E+10.50 1.00 1.50 2.00 2.50 3.00 3.50
Cox (µF/cm 2 ) J OX @ 1 V ( A /c m 2 ) SiO2
Al2O3
HfO2
ZrO2 Ta2O5
Better
TiO2
Source: Intel Components Research
Early Problems with High-K Dielectrics
-0.5 0 0.5 1 1.5
Gate Bias Ga te C a p a ci ta nc e 0 50 100 150 200 250 300 350 400 450 500
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Eeff (MV/cm) E le c tr o n M o b il ity (c m 2 /V .s ) Universal Mobility Curve High-K SiO2
VT instability due to charge traps Degraded inversion layer mobility
Interconnect Delay
Al + SiO2
0.01 0.1 1 10
0.1 1 10
Interconnect Pitch (um) Interconnect
Delay (nsec)
10 mm Line
1 mm Line < 100 MHz
< 1 GHz
< 10 GHz
• Interconnect delay getting worse as pitch scales • Scaling line length helps keep delay constant
Narrow Line Width Resistivity Increase
0.5 1.0 1.5 2.0 2.5
0 100 200 300 400 500 Line Width (nm)
Cu Resistivity (normalized)
Cu resistivity increases for narrow lines due to: • Finite barrier layer thickness
Electromigration Requirements
Al Cu
1 10
65 90 130 180 250 350 500
Technology Generation (nm) Current
Density Requirement
(normalized)
• Current density increases ~1.5x per generation as feature size decreases and operating frequency increases
• EM improved on Al by adding alloy ingredients and shunt layers
Fragile Low-k Dielectric Materials
Si Chip
Organic
Package Solder
Bumps
• Low-k dielectric materials are mechanically weaker than SiO2
• CTE mismatch between chip and package causes stress during chip bonding step
Summary
• High performance logic technology has scaled
at a rapid pace down to the 90 nm generation,
providing significant gains in density and
performance
• Going forward, transistor and interconnect
scaling challenges look formidable
For further information on Intel's silicon technology,