• Tidak ada hasil yang ditemukan

Numericka matematika Numericka matematika Numericka matematika

N/A
N/A
Protected

Academic year: 2018

Membagikan "Numericka matematika Numericka matematika Numericka matematika"

Copied!
13
0
0

Teks penuh

(1)

❯♥✐✈❡r③✐t❡t ✉ ❚✉③❧✐

Pr✐r♦❞♥♦ ✲ ♠❛t❡♠❛t✐↔❦✐ ❢❛❦✉❧t❡t

❖❞s❥❡❦✿ ▼❛t❡♠❛t✐❦❛

Pr❡❞♠❡t✿ ◆✉♠❡r✐↔❦❛ ♠❛t❡♠❛t✐❦❛

❙❊▼■◆❆❘❙❑■ ❘❆❉

❙t✉❞❡♥t✿

❉❛✈♦r ❇❡❣❛♥♦✈✐➣

▼❡♥t♦r✿

❉r✳s❝✳❊♥❡s ❉✉✈♥❥❛❦♦✈✐➣✱ ✈❛♥r✳♣r♦❢✳

(2)

◆✉♠❡r✐↔❦❛ ♠❛t❡♠❛t✐❦❛ ❇❡❣❛♥♦✈✐➣ ❉❛✈♦r ✶

❙❛❞r➸❛❥

✶ ❩❛❞❛t❛❦ ✶✳ ✷

✶✳✶ ▼❡t♦❞❛ s❥❡↔✐❝❡ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✷ ✶✳✷ Pr✐♠❥❡r ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸ ✶✳✸ ❑♦❞ ✉ ▼❛t❤❡♠❛t✐❝❛✲✐ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✹ ✶✳✹ ❑♦♠❡♥t❛r ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✺

✷ ❩❛❞❛t❛❦ ✷✳ ✻

✷✳✶ ◆❡✇t♦♥✲♦✈❛ ♠❡t♦❞❛ ③❛ r❥❡➨❛✈❛♥❥❡ s✐st❡♠❛ ♥❡❧✐♥❡❛r♥✐❤ ❛❧❣❡❜❛rs❦✐❤ ❥❡❞♥❛↔✐♥❛ ✻ ✷✳✷ Pr✐♠❥❡r ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✼ ✷✳✸ ❑♦❞ ✉ ▼❛t❤❡♠❛t✐❝❛✲✐ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✼ ✷✳✹ ❑♦♠❡♥t❛r ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✽

✸ ❩❛❞❛t❛❦ ✸✳ ✾

(3)

◆✉♠❡r✐↔❦❛ ♠❛t❡♠❛t✐❦❛ ❇❡❣❛♥♦✈✐➣ ❉❛✈♦r ✷

✶ ❩❛❞❛t❛❦ ✶✳

✶✳✶ ▼❡t♦❞❛ s❥❡↔✐❝❡

▼❡t♦❞❛ s❥❡↔✐❝❡ ❥❡ ♠♦❞✐✜❦❛❝✐❥❛ ◆❡✇t♦♥✲♦✈❡ ♠❡t♦❞❡✳ ❩❛ ♠❡t♦❞✉ s❥❡↔✐❝❡ ✈r✐❥❡❞❡ s❧❥❡❞❡➣❡ ♣r❡t♣♦st❛✈❦❡✿

• ◆❡❦❛ ♣♦st♦❥✐ x∈[a, b] t❛❦❛✈ ❞❛ ❥❡f(x) = 0✳

• ◆❡❦❛ ❥❡ ❢✉♥❦❝✐❥❛ f ♥❡♣r❡❦✐❞♥❛ ♥❛[a, b]✳

• ◆❡❦❛ ❥❡ f(a)·f(b)<0✳

❯③♠✐♠♦ s❛❞❛ ❞✈✐❥❡ t❛↔❦❡x0✐x1✐③[a, b]✱ t❛❞❛ ✐♠❛♠♦ ❞✈✐❥❡ t❛↔❦❡M0(x0, f(x0))✐M1(x1, f(x1))

♥❛ ❦r✐✈♦❥ ❢✉♥❦❝✐❥❡✳ ◆❡❦❛ ❥❡ ❦♦❞ ♥❛sx0 =b✳ ❙❛❞❛ ❛❦♦ ♣♦✈✉↔❡♠♦ s❥❡❦❛♥t✉ ❦r♦③f(x0) = f(b)

✐ ❦r♦③ f(x1)✐♠❛t ➣❡♠♦ ❦❧❛s✐↔❛♥ ♣r♦❞♦r ♣r❛✈❡ ❦r♦③ ❞✈✐❥❡ t❛↔❦❡ ✐ ❛❦♦ ✉♣♦tr✐❥❡❜✐♠♦ ❢♦r♠✉❧✉

③❛ ♣r♦❞♦r ♣r❛✈❡ ❦r♦③ ❞✈✐❥❡ t❛↔❦❡ ✐♠❛♠♦✿

s:f1(x) =f(x0) +

f(x1)−f(x0)

x1−x0

(x−x0).

❙ ♦❜③✐r♦♠ ❞❛ ❥❡ f1(x) = 0 ✐♠❛♠♦

f(x0) +

f(x1)−f(x0)

x1−x0

(x−x0) = 0

s❛❞❛ ❛❦♦ s✈❡ ♣♦♠♥♦➸✐♠♦ s❛ x1−x0 ❞❛❧❥❡ ➣❡♠♦ ✐♠❛t✐

(x1−x0)f(x0) + (f(x1)−f(x0))(x−x0) = 0

s❛ ❥♦➨ ♠❛❧♦ sr❡➒✐✈❛♥❥❛ ♥❛ ❦r❛❥✉ ❞♦❜✐❥❛♠♦

x= x0f(x1)−x1f(x0)

f(x1)−f(x0)

♣r✐ ↔❡♠✉ ❥❡ f(x0)6=f(x1)✳ ❆❦♦ ♥❛♣r❛✈✐♠♦ ♥✐③ ♦✈❛❦✈✐❤ ❥❡❞♥❛❦♦st✐

x2 =

x0f(x1)−x1f(x0)

f(x1)−f(x0)

x3 =

x1f(x2)−x2f(x1)

f(x2)−f(x1)

✐ t❛❦♦ ♥❛st❛✈✐♠♦✱ ♥❛ ❦r❛❥✉ ➣❡♠♦ ❞♦❜✐t✐

xn+1 =

xn1f(xn)−xnf(xn1)

f(xn)−f(xn−1)

♣r✐ ↔❡♠✉ ❥❡ f(xn−1)6=f(xn)✳ ❩❛ ♦✈❛❥ ♥✐③ ✈r✐❥❡❞✐

lim

n→∞xn =ξ

(4)

◆✉♠❡r✐↔❦❛ ♠❛t❡♠❛t✐❦❛ ❇❡❣❛♥♦✈✐➣ ❉❛✈♦r ✸

❙❧✐❦❛ ✶✿ ▼❡t♦❞❛ s❥❡↔✐❝❡

❑❛♦ ➨t♦ s♠♦ r❡❦❧✐ ♠❡t♦❞❛ s❥❡↔✐❝❡ ❥❡ ♠♦❞✐✜❦❛❝✐❥❛ ◆❡✇t♦♥✲♦✈❡ ♠❡t♦❞❡✳ ❙❛❞❛ ➣❡♠♦ ♣♦❦❛③❛t✐ ✐ ③❜♦❣ ↔❡❣❛✳

❩♥❛♠♦ ❞❛ ❥❡ r❡❦✉r③✐✈♥❛ ❢♦r♠✉❧❛ ③❛ ◆❡✇t♦♥✲♦✈✉ ♠❡t♦❞✉

xn+1 =xn−

f(xn)

f′(xn). ✭✶✮

❙❛❞❛ ❛❦♦ ✉③♠❡♠♦ ❞❛ ❥❡

f′(xn) = lim

xn1→xn

f(xn−f(xn−1))

xn−xn−1

✐♠❛♠♦ ❞❛ ❥❡

f′(xn) f(xn)−f(xn−1)

xn−xn−1

.

❆❦♦ ♣♦s❧❥❡❞♥❥✉ ❛♣r♦❦s✐♠❛❝✐❥✉ f′(xn)✉❜❛❝✐♠♦ ✉ ✭✶✮ ❞♦❜✐t ➣❡♠♦

xn+1 =xn−

f(xn) f(xn)−f(xn

−1)

xn−xn1

✐ s❛❞❛ ❦❛❞❛ t♦ ♠❛❧♦ sr❡❞✐♠♦ ❞♦❜✐❥❛♠♦

xn+1 =

xn1f(xn)−xnf(xn1)

f(xn)−f(xn−1)

➨t♦ ❥❡ ✉st✈❛r✐ ❢♦r♠✉❧❛ ③❛ ♠❡t♦❞✉ s❥❡↔✐❝❡ ✐ ♥❛r❛✈♥♦ ❞❛ ♠♦r❛ ✈r✐❥❡❞✐t✐ f(xn)6=f(xn1)✳

✶✳✷ Pr✐♠❥❡r

▼❡t♦❞♦♠ s❥❡↔✐❝❡ s❛ t❛↔♥♦➨➣✉ ✈❡➣♦♠ ♦❞ ε= 10−4 r✐❥❡➨✐t✐ ❥❡❞♥❛↔✐♥✉ xex1 = 0.

(5)
(6)

◆✉♠❡r✐↔❦❛ ♠❛t❡♠❛t✐❦❛ ❇❡❣❛♥♦✈✐➣ ❉❛✈♦r ✺

✶✳✹ ❑♦♠❡♥t❛r

(7)
(8)
(9)

◆✉♠❡r✐↔❦❛ ♠❛t❡♠❛t✐❦❛ ❇❡❣❛♥♦✈✐➣ ❉❛✈♦r ✽

✷✳✹ ❑♦♠❡♥t❛r

(10)

◆✉♠❡r✐↔❦❛ ♠❛t❡♠❛t✐❦❛ ❇❡❣❛♥♦✈✐➣ ❉❛✈♦r ✾

✸ ❩❛❞❛t❛❦ ✸✳

✸✳✶ ▼❡t♦❞❛ ❘✉♥❣❡✲❑✉tt❛ ③❛ r❥❡➨❛✈❛♥❥❡ ❞✐❢❡r❡♥❝✐❥❛❧♥✐❤ ❥❡❞♥❛↔✐♥❛

P♦s♠❛tr❛❥♠♦ ❈❛✉❝❤②✲❡✈ ♣r♦❜❧❡♠

y′ =f(x, y), y(x

0) =y0.

❏❡❞♥❛ ♦❞ ♥❛❥✈❛➸♥✐❥✐ ♠❡t♦❞❛ ③❛ r❥❡➨❛✈❛♥❥❡ ♦✈♦❣ ❈❛✉❝❤②✲❡✈♦❣ ♣r♦❜❧❡♠ ❥❡ ♠❡t♦❞❛ ❘✉♥❣❡✲ ❑✉tt❛ ✭❘❑✮✶✳ Pr❡t♣♦st❛✈✐♠♦ ❞❛ ♣♦③♥❛❥❡♠♦ ❛♣r♦❦s✐♠❛❝✐❥✉y

n tr❛➸❡♥❡ ❢✉♥❦❝✐❥❡x7−→y(x) ✉ t❛↔❦✐ xn✳ ➎❡❧✐♠♦ ♦❞r❡❞✐t✐ (n+ 1)✲✈✉ ❛♣r♦❦s✐♠❛❝✐❥✉ yn+1 ✉ t❛↔❦✐xn+h✳ ❯ t✉ s✈r❤✉ ♥❛ ✐♥t❡r✈❛❧✉ (xn, xn+h) ✉ ♥❡❦♦❧✐❦♦ str❛t❡➨❦✐❤ t❛↔❛❦❛ ❛♣r♦❦s✐♠✐r❛t ➣❡♠♦ ✈r✐❥❡❞♥♦st ❢✉♥❦❝✐❥❡

x7−→f(x, y(x))✱ t❡ ♣♦♠♦➣✉ ♥❥✐❤ ➨t♦ ❜♦❧❥❡ ❛♣r♦❦s✐♠✐r❛t✐ r❛③❧✐❦✉yn+1−yn✳

◆❛❥❥❡❞♥♦st❛✈♥✐❥✐ ♣r✐♠❥❡r ✐③ ❢❛♠✐❧✐❥❡ ❘❑ ♠❡t♦❞❛ ❥❡ t③✈ ❍❡✉♥✲♦✈❛ ♠❡t♦❞❛

yn+1 =yn+ 1

2(k1 +k2) ❣❞❥❡ ❥❡ k1 =hf(xn, yn)✱ ❛ k2 =hf(xn+h, yn+k1)✳

Pr✐♠❥❡❞❜❛ ✸✳✶

❑❛❦♦ ❥❡

y(xn+1)−y(xn) =

Z xn+h

xn

dy dxdx=

Z xn+h

xn

f(x, y(x))dx

❛❦♦ ♣r❡t♣♦st❛✈✐♠♦ ❞❛ ❥❡fs❛♠♦ ❢✉♥❦❝✐❥❛ ♦❞x✱ ❍❡✉♥♦✈❛ ♠❡t♦❞❛ ♦❞❣♦✈❛r❛ tr❛♣❡③♥♦♠

♣r❛✈✐❧✉✱ ❦♦❥❛ ✐♠❛ ♣♦❣r❡➨❦✉ r❡❞❛ ✈❡❧✐↔✐♥❡O(h2)✳ Pr✐♠✐❥❡t✐♠♦ t❛❦♦➒❡r ❞❛ ❥❡ ③❛ s✈❛❦✉

❛♣r♦❦s✐♠❛❝✐❥✉ yn ♣♦r❡❜♥♦ ❞✈❛ ♣✉t❛ ✐③r❛↔✉♥❛✈❛t✐ ✈r✐❥❡❞♥♦st ❢✉♥❦❝✐❥❡f✳

❑❧❛s✐↔♥❛ ❘❑ ♠❡t♦❞❛ ❞❡✜♥✐r❛♥❛ ❥❡ s❛

yn+1 =yn+ 1

6(k1+ 2k2 + 2k3+k4)

❣❞❥❡ s✉ k1 = hf(xn, yn)✱ k2 = hf(xn + h2, yn + k21)✱ k3 = hf(xn + h2, yn + k22) ✐ k4 =

hf(xn+h, yn+k3)✳

Pr✐♠❥❡❞❜❛ ✸✳✷

❆❦♦ ♣r❡t♣♦st❛✈✐♠♦ ❞❛ ❥❡f s❛♠♦ ❢✉♥❦❝✐❥❛ ♦❞ x✱ ♦♥❞❛ ✐③ ♣r✐♠❥❡❞❜❡ ✸✳✶ ♠♦➸❡♠♦ ♣♦✲

❦❛③❛t✐ ❞❛ ❘❑✲♠❡t♦❞❛ ♦❞❣♦✈❛r❛ ❙✐♠♣s♦♥✲♦✈♦❥ ❢♦r♠✉❧✐✱ ✉③ ③❛♠❥❡♥✉h7−→ h

2✳ ❙❥❡t✐♠♦

s❡ ❞❛ ❙✐♠♣s♦♥♦✈❛ ❢♦r♠✉❧❛ ✐♠❛ ♣♦❣r❡➨❦✉ r❡❞❛ ✈❡❧✐↔✐♥❡O(h2)✱ ➨t♦ s❡ ♣r❡♥♦s✐ ✐ ♥❛ ❘❑

♠❡t♦❞✉ ✐ ✉ ♦♣➣❡♠ s❧✉↔❛❥✉ ✕ ❦❛❞❛ ❥❡ f ❢✉♥❦❝✐❥❛ ♦❞ x ✐ ♦❞ y✳ Pr✐♠✐❥❡t✐♠♦ t❛❦♦➒❡r

❞❛ ❥❡ ❦♦❞ ❘❑ ♠❡t♦❞❡ ③❛ s✈❛❦✉ ❛♣r♦❦s✐♠❛❝✐❥✉yn ♣♦tr❡❜♥♦ ↔❡t✐r✐ ♣✉t❛ ✐③r❛↔✉♥❛✈❛t✐ ✈r✐❥❡❞♥♦st ❢✉♥❦❝✐❥❡f✳

(11)

◆✉♠❡r✐↔❦❛ ♠❛t❡♠❛t✐❦❛ ❇❡❣❛♥♦✈✐➣ ❉❛✈♦r ✶✵

✸✳✷ Pr✐♠❥❡r

▼❡t♦❞♦♠ ❘✉♥❣❡ ✲ ❑✉tt❛ r✐❥❡➨✐t✐ ❈❛✉❝❤②✲❡✈ ♣r♦❜❧❡♠

y′ =x2ex

+y, y(0) = 1

③❛ x∈[0,0.3]✐ ♦❝✐❥❡♥✐t✐ ❣r❡➨❦✉✳

❘❥❡➨❡♥❥❡✿ Pr✐♠✐❥❡t✐♠♦ ❞❛ ♥❛♠ ❥❡ x ∈ [0,1]✳ ❯③♠✐♠♦ s❛❞❛ ❞❛ ♥❛♠ ❥❡ h = 0.15 ✐ ♥❡❦❛ ❥❡ ∆y= 1

6(k1+ 2k2+ 2k3+k4)✳ ❋♦r♠✐r❛❥♠♦ t❛❜❡❧✉

i x y k =hf(x, y) ∆y

✵ ✵ ✶ ✵ ✵

✵✳✵✼✺ ✶ ✲✵✳✵✸✸✷✸ ✲✵✳✵✻✻✹✻

✵✳✵✼✺ ✵✳✾✻✻✼✼ ✲✵✳✵✶✺✽✷ ✲✵✳✵✸✶✻✺

✵✳✶✺ ✵✳✾✽✹✶✽ ✲✵✳✵✷✸✷✼ ✲✵✳✵✷✸✷✼

✲✵✳✵✷✵✷✸

✶ ✵✳✶✺ ✵✳✾✼✾✼✼ ✲✵✳✵✷✸✾✸ ✲✵✳✵✷✸✾✸

✵✳✷✷✺ ✵✳✾✻✼✽✶ ✲✵✳✵✸✺✵✽ ✲✵✳✵✼✵✶✼

✵✳✷✷✺ ✵✳✾✻✷✷✸ ✲✵✳✵✸✺✾✷ ✲✵✳✵✼✶✽✹

✵✳✸ ✵✳✾✹✸✽✺ ✲✵✳✵✹✼✹✵ ✲✵✳✵✹✼✹✵

✲✵✳✵✸✺✺✻

❙❛❞❛ ✐③r❛↔✉♥❛❥♠♦ y2✿

y2 =y1+ ∆y= 0.97977−0.03556 = 0.94421.

❖st❛❧♦ ♥❛♠ ❥❡ ❥♦➨ ❞❛ ♣r♦❝✐❥❡♥✐♠♦ ❣r❡➨❦✉✳ ❚♦ ➣❡♠♦ ✉↔✐♥✐t✐ t❛❦♦ ➨t♦ ➣❡♠♦ s✈❡ ✐st♦ ✉r❛❞✐t✐✱ ❛❧✐ s❛♠♦ ③❛ ❦♦r❛❦ 2h✱ ♦❞♥♦s♥♦ t♦ ❜✐ ❦♦❞ ♥❛s s❛❞❛ ❜✐❧♦ h = 0.3 ✐ ♦♥❞❛ ➣❡♠♦ ❦♦r✐st✐t✐ ❘✉♥❣❡✲♦✈✉ ♦❝❥❡♥✉ ❣r❡➨❦❡✳ ❉❛❦❧❡✱ ✐③r❛↔✉♥❛❥♠♦ k1✱ k2✱ k3✱ k4✿

k1 = 0

k2 =−0.04180

k3 =−0.04807

k4 =−0.09238.

❙❛❞❛ ✐③r❛↔✉♥❛❥♠♦

y1 = 1 +

1

6(0−0.04180−0.04807−0.09238) = 0.96963 ❖❝❥❡♥✉ ❣r❡➨❦❡ ➣❡♠♦ ✐③r❛↔✉♥❛t✐ ♥❛ s❧❥❡❞❡➣✐ ♥❛↔✐♥

|yh −y2h|

15 =

|0.94421−0.96963|

15 = 0.0017<0.005 = 1 210

−2.

(12)
(13)

◆✉♠❡r✐↔❦❛ ♠❛t❡♠❛t✐❦❛ ❇❡❣❛♥♦✈✐➣ ❉❛✈♦r ✶✷

▲✐t❡r❛t✉r❛

❬✶❪ ❘✉❞♦❧❢ ❙❝✐t♦✈s❦✐✱ ◆✉♠❡r✐↔❦❛ ♠❛t❡♠❛t✐❦❛✱ ❞r✉❣♦ ✐③❞❛♥❥❡✱ ❙✈❡✉↔✐❧✐➨t❡ ❏✳❏✳ ❙tr♦s✲ s♠❛②❡r❛ ✉ ❖s✐❥❡❦✉✱ ❖❞❥❡❧ ③❛ ♠❛t❡♠❛t✐❦✉✱ ❖s✐❥❡❦✱ ✷✵✵✹✳

Referensi

Dokumen terkait

Diketahui fungsi penawaran P=20Q 2 +4Q dan fungsi permintaannya P=-2Q 2 +300.. Market Equilibrium sebelum pajak b. Market equilibrium setelah pajak c. T,Tk dan Tp.. Keseimbangan

Tetapi pada dasarnya, pengklasifikasian industri didasarkan pada kriteria yaitu berdasarkan bahan baku, tenaga kerja, pangsa pasar, modal, atau jenis teknologi

Da se opredeli pomalata osnova taka xto ploxtinata na trapezot da bide maksimalna... 4.5.11 Ispituvanje osobini na funkcija i skiciranje

U sedmom poglavlju « Određeni integral » definisani su pojmovi int egrabilnosti i određenog integrala (u Riemannovom smislu ) na segmentu i na proizvoljnom ograničenom

Tempat, Tanggal Lahir : Karawang, 17 Desember 1995 Pesan : Tetap jaga nama “Disiplin Berprestasi” Kesan : Nano – nano semuanya ada di sini No.. Nama : Wahyu

(2) Kesulitan yang dialami siswa disebabkan beberapa faktor diantaranya tidak menguasai konsep PLDV, tidak mengetahui bahwa pangkat variabel tidak diperhatikan

Penalaran deduktif adalah penarikan kesimpulan berdasarkan aturan yang disepakati. Nilai kebenaran dalam penalaran deduktif bersifat mutlak benar atau salah dan tidak

menjalankan aturan permainan (PPKn) Siswa mampu melakukan permainan sesuai dengan instruksi tanpa pengarahan ulang Siswa mampu melakukan permainan sesuai aturan