ﻂﻠﺘﺨﻣ ﻊﺑاﻮﺗ زا ﻲﺧﺮﺑ ﻲﺳرﺮﺑ
1 - ﻲﺋﺎﻤﻧ ﻊﺑﺎﺗ f(z) e= z
( )
x+iy x
x x
f(z) = e e cos(y) + i sin(y) u e cos(y) , v e sin(y)
=
= =
( )
( )
z+2πi x+iy+2 i x
x z
e = e e cos(y + 2 ) + i sin(y + 2 ) = e cos(y) + i sin(y) = e
π = π π
z x z
| e | e , arg(e ) y= =
x x
x x
u -e sin(y) u e cos(y)
x
v= e co y
v = e sin(y) s( ) y
x y
∂ =
∂
∂
∂
∂ =
∂
∂
∂
ﻊﺑﺎﺗ ﻦﻳا ﺲﭘ مﺎﺗ
ﺖﺳا .
x x
z
u v
w = + i w e cos(y) + i e sin(y)
x x
= e = w
∂ ∂
′ → ′=
∂ ∂
تﺎﺒﺛا :
( )
u u
u u
w u+iv u
u u
u u
U u v
e cos(v) + e (-sin(v))
y y y
V u v
= e sin(v) + e (cos(v)) x
U u v
e cos(v) + e (-sin(v))
x x x
e = e = e cos(v) + i s
V u v
e sin(v) + e (co in(v)
s(
x x
= U +
) i
y y
V
y v )
∂ = ∂ ∂
∂ ∂ ∂
∂ ∂ ∂
∂
∂ ∂ ∂
∂ = ∂ ∂
∂ ∂ ∂
∂ = ∂
∂ ∂
∂
ﺲﭘ :
U V
, U y
y x
x
- V
∂ ∂
∂
∂
∂ = ∂
∂ = ∂
ﻲﺋﺎﻤﻧ ﻊﺑﺎﺗ صاﻮﺧ زا ﻲﺧﺮﺑ :
1
1 2 1 2 1 2
2
z
z z z +z z - z
z
z c cz w(z) w(z)
e e = e e = e e
(e ) = e [e ] = e
′w (z)
′ﺖﺴﻴﻧ ﺮﻔﺻ ﻪﻄﻘﻧ ياراد ﻊﺑﺎﺗ ﻦﻳا .
2 - ﻲﺗﺎﺜﻠﺜﻣ ﻊﺑاﻮﺗ
iz -iz iz -iz
e - e e + e
sin(z) = , cos(z) =
2i 2
sin(z) cos(z)
tg(z) = , cotg(z) =
cos(z) sin(z)
و سﻮﻨﻴﺳ ﻊﺑﺎﺗ اﺬﻟ ،هدﻮﺑ ﻲﻠﻴﻠﺤﺗ ﺎﺟ ﻪﻤﻫ ﻲﺋﺎﻤﻧ ﻊﺑﺎﺗ ﺪﻨﺘﺴﻫ ﻲﻠﻴﻠﺤﺗ ﺰﻴﻧ سﻮﻨﻴﺴﻛ .
[ ] [ ]
d sin(z) cos(z) d
cos(z) - s
dz in(z)
= dz =
sin(z) = sin(x + iy) = sin(x)cos(iy) + cos(x)sin(iy)
ﻂﺑاور زا 1 و 3 ﻢﻳراد :
تﺎﺒﺛا : sin(z) = sin(x)cosh(y) + i cos(x)sinh(y) = 0
( ) ( )
ix - y -ix + y
-y y
e - e z = x + iy sin(z) =
2i
e cos(x) + i sin(x) - e cos(x) - i sin(x) sin( )
2i
→
⎡ ⎤
⎣ ⎦
= z
2 2 2
2 2 2
2 2 2 2
| sin(z) | = sin (x) + sinh (y)
| cos(z) | = cos (x) + sinh (y) sin (z) + cos (z) = cosh (y) - sinh (y) = 1
⎧⎪
⎨⎪
⎩
sin(x)cosh(y) = 0 sin(x) = 0 x = n cos(x)sinh(y) = 0 sinh(y) = 0 y 0
⎧ ⇒⎧ ⇒⎧
⎨ ⎨ ⎨ =
⎩ ⎩ ⎩
π cos(z) = cos(x)cosh(y) - i sin(x)sinh(y) = 0
(
tg(z) =)
12cos (z) ′
3 - ﻢﺘﻳرﺎﮕﻟ ﻊﺑﺎﺗ f(z) Log(z)=
z = reiθ → f(z) = Log(r) + iθ
2 2 -1
2 2 -1
1 y
f(z) Log(x + y ) + i tan ( )
2 x
1 y
u Log(x + y ) v tan ( )
2 x
=
= =
2 2 2
2 2
2 2
2 2
2
u y
y x + y
v -y
x x + y
u x
x + y 0 x x x + y
v x
y x + y
, y 0 z 0
∂ = ∂ =
∂
≠ ⇒ ≠
∂ =
∂
∂ =
→
∂
≠ ∂
2 2 2 2 2 2 2
x y x - iy z z
f (z) = - i = = =
x + y x + y x + y | z | zz f (z) = 1
z
′
′
ﻢﺘﻳرﺎﮕﻟ ﻊﺑﺎﺗ صاﻮﺧ زا ﻲﺧﺮﺑ :
2
1 2 1 2
1
1 2
2 z
1 2 1
Log(z z ) = Log(z ) + Log(z ) Log( ) = Log(z ) - Log(z )z
z
Log(z ) = z Log(z )
لﺎﺜﻣ 1
i : w = i
πi 2
-π
i 2
Log(w) i Log(i) iLog(e ) i ( i) -
2 2
w = i = e
= = = π = π
لﺎﺜﻣ 2 :
i
z = -1 = e1 π ⇒Log(-1) = iπ
4 - نوراو ﻲﺗﺎﺜﻠﺜﻣ ﻊﺑاﻮﺗ
-1
iw -iw
iw -iw
2iw iw iw 2
2 2
1 2
w = sin (z) sin(w) = z e - e
z = e - e - 2iz = 0
2i
e - 2ize -1 = 0 e = iz ± 1- z
w = -i Log(iz + 1- z ) , w = -i Log(iz - 1- z )
→
⇒
⇒
داد نﺎﺸﻧ ناﻮﺗ ﻲﻣ
1 2 :
w + w = (2k +1)π
-1
2 -1
1
2
2
- 1
sin ( 1
cos (z) = -1 z)
tg (z
1 =
1-
) 1+
z
= z
- z
′
′
⎡ ⎤
⎣ ⎦
⎡ ′
⎡ ⎤
⎣
⎣ ⎤⎦
⎦
5 - ﻲﻟﻮﻟﺬﻫ ﻊﺑاﻮﺗ
z -z z -z
e - e e + e
sinh(z) = , cosh(z) =
2 2
sinh(z) cosh(z)
tgh(z) = , cotgh(z) =
cosh(z) sinh(z)
cos(x)cosh(y) = 0 cos(x) = 0 x = n -sin(x)sinh(y) = 0 sinh(y) = 0 y 0 2
⎧ +
⎧ ⇒⎧ ⇒⎪
⎨ ⎨ ⎨
⎩ ⎩ ⎪ =⎩
π π
(
cotg(z) =)
-12sin (z)
′
1 2 1 2 1 2
Log(z z ) = Log(z ) + Log(z ) , z = z = -1
[ ] [ ]
d sinh(z) = cosh(z) d
cosh(z) = sin dz
dz h(z)
( ) ( )
(x+iy) -(x+iy)
x -x
e - e
sinh(z) = 2
1 e cos(y) + i sin(y) - e cos(y) - i sin(y)
2⎡ ⎤
= ⎣ ⎦
ﻲﻟﻮﻟﺬﻫ ﻊﺑاﻮﺗ يﺎﻫﺮﻔﺻ ﻦﻴﻴﻌﺗ
sinh(z) = sinh(x)cos(y) + i cosh(x)sin(y) = 0 sinh(x)cos(y) = 0 sinh(x) = 0 x = 0 cosh(x)sin(y) = 0 sin(y) = 0 y n
⎧ ⎧ ⎧
⇒ ⇒
⎨ ⎨ ⎨ =
⎩ ⎩ ⎩ π
cosh(z) = cosh(x)cos(y) + i sinh(x)sin(y) = 0
x = 0 cosh(x)cos(y) = 0 cos(y) = 0
sinh(x)sin(y) = 0 sinh(x) = 0 y n 2
⎧ ⇒⎧ ⇒⎧⎪
⎨ ⎨ ⎨ = +
⎩ ⎩ ⎪⎩ π π
6 - نوراو ﻲﻟﻮﻟﺬﻫ ﻊﺑاﻮﺗ